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Abstract

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy
text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has
survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in
the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software
like Aldus PageMaker including versions of Lorem Ipsum. Contrary to popular belief, Lorem Ipsum is not simply random text. It
has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor
at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage,
and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections
1.10.32 and 1.10.33 of ”de Finibus Bonorum et Malorum” (The Extremes of Good and Evil) by Cicero, written in 45 BC. This
book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, ”Lorem ipsum dolor
sit amet..”, comes from a line in section 1.10.32.

Keywords: TBD

1. Introduction

2. Background and Related Work

This section provides the necessary information to under-
stand the rest of this paper and survey the state-of-the-art in
the context of code smells.

2.1. Background

Table 1 shows the code smells detectable by the framework
of Johannes et al. [1] with a brief description. The code smells
detectable by the framework encompasses multiple categories
of potential issues, including syntactic concerns (e.g., Lengthy
Lines, Chained Methods), structural complexity (e.g., Nested
Callbacks, Depth Smell), and semantic misuses (e.g., Variable
Re-assign, Assignment in Conditional Statements).

To give a tangible example of code smells, let us consider
Variable Re-assign smell. This smell occurs when developers
reuse the same variable but change the type or semantic role
of the value it holds within the same scope. Such practice can
significantly reduce code readability and increase the likelihood
of runtime errors. Listing 1 shows an example of Variable Re-
assign smell.

Table 1: Code Smells Detectable by the Framework of Johannes et al.

Code Smell Description
Lengthy Lines Occur when a single line of code contains too many characters.
Chained Methods This smell occurs when there is excessive use of method chaining—repeatedly

invoking multiple methods in a single statement.
Long Parameter List This smell arises when a function is defined with too many parameters, which

can complicate its usage, reduce readability, and increase the likelihood of errors.
Nested Callbacks This smell arises in the code when multiple asynchronous tasks are executed in

sequence.
Variable Re-assign The smell refers to when a variable is re-assigned with a different type in the

same scope.
Assignment in Conditional State-
ments

The smell occurred when the assign operator is used in an “if” statement.

Complex Code This smell appears when a JavaScript file exhibits high cyclomatic complexity,
meaning the code contains a large number of linearly independent paths.

Extra Bind This smell typically occurs when a function is unnecessarily bound using
.bind(ctx) even after the this keyword has been removed from its body.

This Assign This smell occurs when the “this” keyword is assigned to another variable (e.g.,
var self = this) in order to access the parent scope’s context.

Long Method This smell occurs when a method is composed of too many lines of code.
Complex Switch Case This smell refers to when there are too many switch case statements.
Depth Smell This smell occurs when the code contains too many nested blocks or deep levels

of indentation.

To illustrate the Variable Re-assign code smell, consider the
following JavaScript example:

1 function calculateDiscount(userInput) {

2 let discount = userInput; // discount

holds a string (e.g., "20")

3

4 if (!isNaN(discount)) {

5 discount = parseFloat(discount); //
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now a number

6 }

7

8 if (discount > 12) {

9 discount = "MAX";// now a string

again

10 }

11

12 return discount;

13 }

14

15 console.log(calculateDiscount("60")); //

Outputs: "MAX"

Listing 1: Example of Variable Re-assign Code Smell.

As we can see from the example, the variable discount
changes multiple times—first holding a string, then a number,
and finally being reassigned to a string again. This change
can potentially decrease code clarity and maintainability, as the
variable’s type and purpose become ambiguous throughout the
function.

A possible mitigation strategy in this case consists of avoid-
ing variable reuse for semantically distinct purposes. For exam-
ple, the original user input can be stored in one variable (e.g.,
rawInput), the parsed numeric value in another (e.g., numer-
icDiscount), and any final label or status in a third (e.g., finalD-
iscount). As illustrated in Listing 2.

1 function calculateDiscount(userInput) {

2 const rawInput = userInput; // original

input as string

3 const numericDiscount = parseFloat(

rawInput); // parsed numeric value

4

5 let finalDiscount;

6 if (! isNaN(numericDiscount) &&

numericDiscount > 12) {

7 finalDiscount = "MAX"; // label

assigned

8 } else {

9 finalDiscount = numericDiscount; //

return the numeric value

10 }

11

12 return finalDiscount;

13 }

14

15 console.log(calculateDiscount("60")); //

Outputs: "MAX"

Listing 2: Refactored Version Avoiding Variable Re-assign

2.2. State-of-the-art
Fowler and Beck defined code smells as indicators of subop-

timal software design that may suggest the presence of deeper
structural issues within the source code [2]. In the last decades,
code smells have been investigated from different perspectives.
In the context of Java systems, code smells were investigated
from multiple angles. From an evolutionary standpoint, Gior-
dano et al. investigated their relationship with respect to design

patterns [3] and inheritance and delegation [4]. In both cases,
they discovered that some code smells are positively correlated
with best practices. Tufano et al. [5] investigates when and why
code smells evolve in Java systems, discovering that smells are
commonly introduced in the first stages of the project, and their
removal is typically related to file removal. Li and Shatnawi
[6] investigated the relationship between code smells and bugs
across three versions of Eclipse and revealed a positive corre-
lation between the presence of code smells and an increased
likelihood of errors. Sjoberg et al. [7] investigated the relation-
ship between code smells and maintenance effort, concluding
that code smells have a limited impact on maintenance activi-
ties. In contrast, Abbes et al. [8] found that the presence of code
smells can adversely affect code understandability. Khomh et
al. [9] examined the relationship between code smells and both
change- and fault-proneness across 54 releases of four widely
used Java open-source systems—ArgoUML, Eclipse, Mylyn,
and Rhino. Their findings indicate that classes affected by code
smells are generally more susceptible to changes and faults
compared to those without such smells.

Moving on to JavaScript-specific code smells, several tools
have been developed over the years. Fard et al. [10] intro-
duced a technique called JNOSE for detecting 13 distinct types
of code smells in JavaScript systems. Their study identified
lazy object and long method as the most prevalent code smells
across the analyzed systems. Nguyen et al. [11] developed a
tool that focuses on detecting issues such as the intermixing of
HTML, CSS, and JavaScript. Additionally, tools such as ES-
Lint [1], JSLint [12], and JSHint [13] utilize rule-based static
code analysis to validate source code against established best
practices.

In comparing our replication study with the original work by
Johannes et al. [1], the primary differences lie in the expansion
of the experimental dataset. Specifically, we extended the scope
of the original study by analyzing 50 projects, as opposed to the
15 considered in the original work, and by selecting a broader
project domain. Through this replication, our objective is to
either confirm or refute their findings, thereby contributing to
the robustness and generalizability of their conclusions.

3. Research Method

The goal of this study is to investigate the evolution of
code in JavaScript systems, and their relationship with fault-
proneness. The quality focus of this investigation is the fault
proneness of the source code, as greater fault proneness can
significantly impact the cost of software maintenance and evo-
lution.

The study is carried out from the perspective of practitioners
and researchers. Practitioners are interested in identifying de-
velopment practices that may lead to the accidental introduction
of code smells, as well as understanding how these smells re-
late to the quality and maintainability of software systems. Re-
searchers, on the other hand, aim to deepen the understanding
of code smells by analyzing their characteristics and investigat-
ing their potential relationship with fault-proneness in software
systems.
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The context of this study is based on the analysis of 12 types
of code smells detectable using the framework of Johannes et
al. [1] across 50 real-world JavaScript systems.

In compliance with our goal, we formulated the following
research questions:

Û RQ1.On code smell survivability.

What is the lifespan of code smells in JavaScript projects?

The RQ1 explores the longevity of code smells by analyz-
ing when they are introduced and how long they persist in the
code. The study by Johannes et al. conducted on 15 JavaScript
projects, revealed that many code smells are present from the
moment a file is created and tend to persist over time. Among
them, Variable Re-assign emerged as the most long-lived code
smell. By expanding the analysis to a larger number of projects,
it will be possible to assess whether the lifespan of code smells
varies depending on the type or complexity of the project.

Û RQ2.Comparison of Fault-Proneness Between
Smelly and Non-Smelly Files.

Is the risk of fault higher in files containing code smells
compared to files without smells?

The goal of the RQ2 is to compare the time to failure between
JavaScript files that contain code smells and those that do not.
The study conducted by Johannes et al. [1] on 15 projects re-
vealed that files without code smells have a 33% lower risk of
failure. When accounting for dependencies between code ele-
ments, the risk reduction increases to 45%. By expanding the
analysis to 50 projects, it will be possible to confirm or revise
these percentages using a broader and more diverse dataset.

Û RQ3.On the equally of code smells in fault-
proneness.

Are JavaScript files containing code smells equally fault-
prone?

The RQ3 aims to identify which code smells have the great-
est impact on software quality, helping to determine which
should be prioritized during refactoring. The study conducted
by Johannes et al. found that the smells Variable Re-assign,
Assignment in Conditional Statements, and Complex Code are
among those most strongly associated with a high risk of fail-
ure. By extending the analysis to 50 projects, it will be possible
to verify whether these categories remain critical or if new risk
patterns emerge.

When conducting our empirical experiment, we adopted the
software engineering practices described by Wholin et al. [14].
In terms of reporting, we leverage the ACM/SIGSOFT Empiri-
cal Standards1, specifically, given the connotation of our study,

1https://github.com/acmsigsoft/EmpiricalStandards

we used the “General Standard”, “Data Sicence”, and “Reposi-
tory Mining” guidelines.

First, we selected JavaScript repositories from GitHub using
GitHub Search [15], then, we ran the framework of Johannes et
al. [1] and extracted information about smells, including infor-
mation about the introduction and removal of the smell, and in-
formation about fault. Once the data were extracted, the frame-
work applied the Cox Proportional Hazards (COX) model [16]
to evaluate the correlation between smells and fault-proneness
from a temporal point of view.

Figure 1 overviews the research method of this study. In the
next sections, we will elaborate in detail on the steps applied to
perform our study.

3.1. Project Selection

Aware that project selection is one of the most critical phases
of the study, we took steps to mitigate potential threats to va-
lidity by using GitHub Search [15]—a specialized platform
designed to identify suitable open-source projects hosted on
GitHub. Given the focus of our analysis, we restricted the se-
lection to projects written in JavaScript. At the end of this step,
we identified 50 projects. Table 2 provides the statistical de-
scription of the projects analyzed.

Table 2: Statistical Description of Projects Analyzed.

Statistic Issues Stars Contributors LOC
Mean 1,143.06 17,553.28 199.14 138,621.4
Standard Deviation 768.18 15,614.79 154.98 206,071.1
Min 2 864 39 3,041
25th Percentile 648.25 10,425 90 29,808.25
Median (50%) 1,227 14,900 157.5 65,314
75th Percentile 1,504.75 19,800 265.5 146,356
Max 4,752 106,000 836 1,252,611

As can be seen from the table, the distribution of project char-
acteristics is notably skewed. For instance, while the median
number of stars is 14,900, the maximum reaches 106,000, sug-
gesting the presence of outliers. The number of contributors
also shows significant variability, with a median of 157.5 and
a maximum of 836. The distribution of lines of code is par-
ticularly broad: although the median project has around 65,314
LOC, some projects reach over 1.2 million, while others remain
below 10,000. These results highlight the heterogeneous nature
of the dataset, which includes both lightweight and extremely
large-scale projects in terms of popularity, collaboration, and
codebase size.

3.2. Survival Analysis and the Cox Proportional Hazards
Model

The framework employs survival analysis to model the time
until the occurrence of well-defined events, such as the intro-
duction of a code smell or the appearance of a fault. Among
the various techniques available for this purpose, the Cox Pro-
portional Hazards Model was selected due to its flexibility and
ability to incorporate multiple explanatory variables without re-
quiring strong assumptions about the baseline hazard distribu-
tion.

To estimate the risk associated with faults or code smells, the
model defines the hazard function as λi(t) = λ0(t) ·eβ·Fi(t), where
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Figure 1: Research Method Overview.

λi(t) represents the instantaneous risk for file i at time t, λ0(t) is
the baseline hazard, Fi(t) is the vector of covariates associated
with the file at that time, and β denotes the coefficients indicat-
ing the effect size of each covariate. The model assumes a linear
relationship between the log-hazard and the covariates. When
this assumption does not hold—for instance, when the effect
of a covariate changes over time—a link function is applied to
transform the variables appropriately, thereby maintaining the
model’s validity.

To further ensure that the proportional hazards assumption
is satisfied, the framework performs non-proportionality tests
prior to model fitting. Additionally, stratification is employed
to control for confounding variables that are not of direct inter-
est by grouping observations into homogeneous subsets. This
approach enables a more accurate estimation of the effects of
primary variables while accounting for background variability.

The relative risk between two files i and j at a specific point
in time is computed as λi(t)/λ j(t) = eβ·(Fi(t)−F j(t)). This formula-
tion reflects the multiplicative nature of the model, where each
covariate contributes proportionally to the hazard, assuming its
effect remains constant over time.

The survival analysis is applied across all commits and files
in the studied projects. For each file, the model estimates the
hazard of experiencing either a fault or the introduction of a
code smell, based on independent variables such as the pres-
ence of smells, file size (measured in lines of code), and code
complexity.

The Cox model offers several advantages that make it par-
ticularly well-suited for this study. It accommodates censored
data, meaning that files that never experience a fault or smell
within the observation window can still be included in the anal-
ysis. It also supports comparisons between smelly and non-
smelly files by incorporating binary covariates into the hazard

function. Furthermore, the model captures the evolution of file
characteristics over time, allowing for longitudinal analysis. Fi-
nally, because files may exhibit multiple faults throughout their
lifespan, the model’s ability to handle recurrent events is es-
sential for accurately characterizing fault dynamics in evolving
software systems.

3.3. Framework Execution
Once the project selection was completed, we utilized the

framework of Johannes et al. [1] to extract information about
faults, code smells, and survivability analysis. The tool is
equipped with three dedicated modules to detect these types of
information.

RQ1. Code Smell Identification and Survivability. To de-
tect code smells, the framework generates an abstract syntax
tree (AST) and analyzes the code using the ESLint2 library. For
each commit, it checks for the presence of code smells as de-
fined in Section 2, using threshold-based criteria. The severity
of a smell is computed as the degree to which it exceeds the
corresponding threshold.

The framework tracks all commits that modify smelly files,
enabling the monitoring of smell evolution over time. Specifi-
cally, given two consecutive commits, C1 and C2, on a file F, if
a smell appears in C2 but is absent in C1, then C2 is marked as
a smell-introducing commit. Conversely, if a smell is present in
C1 but not in C2, C2 is marked as a smell-removal commit. If a
smell is never removed, it is assumed to persist throughout the
lifespan of the project.

To assess similarity between smells, the framework considers
two factors: (1) whether the smell categories match, and (2) a
textual similarity score between descriptions. If the categories

2eslint.org/
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align, a similarity score ranging from 0 to 1 is computed. If this
score exceeds a predefined threshold, the smells are considered
equivalent.

RQ2. Comparison of Fault-Proneness Between Smelly
and Non-Smelly Files. To address RQ2, a survival analysis
was conducted to compare the time to failure between files that
contain code smells and those that do not. The Cox propor-
tional hazards model was employed to estimate the relative risk
of failure as a function of multiple independent variables. The
analysis was performed at both the commit level and the line-
of-code level.

Files are categorized into two groups i.e., those containing at
least one of the 12 types of code smells considered, and those
that are smell-free. For each commit, the framework records
both the time between revisions and the presence or absence
of code smells. The Smelly metric is used as an independent
variable to quantify the impact of smells on failure risk.

To ensure that the failures analyzed are truly associated with
code smells, the framework incorporates the SZZ Fischer im-
plementation [17] algorithm, which traces each defect back to
the commit in which it was introduced. Bug-introducing com-
mits that focus exclusively on JavaScript files, ignoring com-
mits that modify only empty or comment lines. To reduce
false positives, the tool applies the Median Absolute Deviation
(MAD) metric proposed by Da Costa et al. [18], filtering out
anomalous values produced by SZZ. This enables verification
of the co-occurrence between faults and code smells.

Once a bug-introducing commit is identified, the framework
uses the diff command to compare versions of the affected file
and extract a set of candidate fault lines. Finally, it generates an
Abstract Syntax Tree (AST) to determine dependencies among
variables, functions, and modules, enabling the identification of
extended candidate fault lines, i.e., external modules or func-
tions potentially impacted by the fault.

Finally, the difference in failure rates between smelly and
non-smelly files is analyzed to determine whether code smells
are associated with a statistically significant increase in failure
risk.

RQ3. On the equality of code smells in fault-proneness.
To evaluate whether all code smells contribute equally to fault-
proneness, the framework adopts a methodology similar to that
used for RQ2, but applies it in a more fine-grained and differen-
tiated manner. Rather than considering code smells as a single
aggregated factor, this analysis models the effect of each indi-
vidual code smell category separately, enabling the assessment
of the specific impact each type of smell has on fault occur-
rence.

For each smell category, the framework defines a binary in-
dependent variable, denoted as Smelly, which indicates whether
the corresponding smell is present in a given file at a particular
commit. This disaggregated representation allows the survival
model to estimate the unique contribution of each smell type to
the overall hazard of fault introduction.

In addition to the presence or absence of specific smells, the
model accounts for several control variables that are known to
influence fault likelihood. These include the file’s size, mea-
sured in lines of code (LOC); the extent of code churn, captured
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Figure 2: Diffusion of Code Smells in JavaScript Systems.

by the number of lines added, removed, or modified across
commits; and the number of previously reported faults asso-
ciated with the file, which serves as a proxy for its historical
defectiveness.

For each subject system, the framework constructs a Cox
proportional hazards model incorporating both the individual
smell variables and the aforementioned covariates. Prior to
estimation, the framework performs standard tests for non-
proportionality to verify that the assumptions underlying the
model are satisfied and that the hazard ratios can be interpreted
reliably.

This approach makes it possible to determine whether certain
code smells are more strongly correlated with software faults
than others, and whether some types of smells represent a dis-
proportionately higher risk to software reliability. By isolating
and quantifying the effect of each smell type, the framework of-
fers detailed insights into the relative severity of different forms
of technical debt, thereby supporting more targeted and effec-
tive refactoring strategies.

4. Analysis of the Results

This section describes the main results of our research ques-
tion. To increase readability, this section will discuss the main
findings of each RQ individually.

Before analyzing the RQs results, we provide some pre-
liminary considerations regarding the diffusion of smells into
JavaScript systems. Figure 2 illustrates the diffusion of code
smells into the analyzed projects.

As it is possible to see from the figure, the three most domi-
nant smells are Variable Re-assign, Lengthy Lines, and Chained
Methods, respectively. These three categories represent the vast
majority of occurrences, indicating that stylistic and structural
issues such as variable reassignments and overly long or com-
plex statements are particularly prevalent across the analyzed
codebases. Following these, other smells such as Complex
Code, Nested Callbacks, and Long Methods appear with sig-
nificantly lower frequency. These patterns suggest that while
deeper structural issues exist, they are less common compared
to more surface-level readability concerns. At the lower end
of the spectrum, smells like Assignment in Conditional State-
ments, Depth Smell, and Extra Bind are relatively rare, po-
tentially reflecting either better developer awareness of these
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issues or limited applicability depending on the programming
paradigm used.

4.1. RQ1 – Survivability of Code Smells.

Table 3: Survivability and Status of Entities per Project.

Project % Removed % Active Mean Survivability
(Days)

Mean Survivability
(Commits)

% Smells from Day One

JSDoc 99.28% 0.72% 425 424 59.65%
ExcelJS 97.86% 2.14% 618 342 62.25%
Axios 86.43% 13.57% 599 204 16.38%
Chrome Extensions Samples 9.59% 90.41% 3228 1048 95.48%
Flux 72.49% 27.51% 604 115 70.28%
Blockly Samples 41.82% 58.18% 776 725 81.06%
Highlight.js 99.36% 0.64% 825 759 56.21%
Handlebars.js 39.5% 60.5% 3350 1212 53.66%
Jasmine 96.11% 3.89% 813 373 42.36%
Prism 27.46% 72.54% 1448 1329 51.16%
Async 74.4% 25.6% 989 351 50.13%
Karma 92.87% 7.13% 441 504 81.2%
Browserify 78.83% 21.17% 282 504 36.48%
JQuery Validation 50.4% 49.6% 2264 303 78.4%
Emotion 88.37% 11.63% 413 220 51.16%
Forever 76.04% 23.96% 755 160 37.99%
Gulp 66.67% 33.33% 520 207 23.73%
Validator.js 100% 0% 394 159 30.59%
LocalForage 76.46% 23.54% 1005 200 71.69%
Markdown 100% 0% 1201 328 34.75%
Popmotion 93.45% 6.55% 170 155 59.95%
Stf 45% 55% 1085 891 41.31%
Reactstrap 97.35% 2.65% 504 261 94.64%
Gpu.js 98.77% 1.23% 319 269 51.33%
Sweetalert2 99.62% 0.38% 122 155 50.35%
Nodemailer 99.85% 0.15% 285 84 49.46%
Fetch 47.79% 52.21% 829 154 8.56%
Anime 26.81% 73.19% 1538 235 75.84%
Standard 64.94% 35.06% 469 369 46.82%
Sortable 48.02% 51.98% 1136 171 35.3%
Winston 91.71% 8.29% 1007 384 38.34%
Ws 99.96% 0.04% 919 399 26.79%
Yargs 97.09% 2.91% 316 289 19.89%
Piskel 60.58% 39.41% 1522 525 66.94%
Katex 98.83% 1.17% 365 161 55.77%
Prepack 23.08% 76.92% 999 730 85.03%
Ungit 99.99% 0.01% 64 139 96.22%
Recompose 94.12% 5.88% 221 214 47.06%
Places 98.63% 1.37% 210 98 100%
Just 99.01% 0.99% 59 58 96.05%
Razzle 21.05% 78.95% 686 703 93.78%
Bpmn-js 98.68% 1.32% 517 351 50.02%
Artillery 44.24% 55.76% 469 512 83.47%
Gridsome 61.54% 38.46% 554 600 89.74%
Parsley.js 50.03% 49.97% 1732 438 77.53%
NLP.js 4.12% 95.88% 1409 1479 99.85%
Aura 97.87% 2.13% 202 109 79.72%
VisBug 100% 0% 832 1069 100%
A Dark Room 77.76% 22.24% 1067 226 31.42%
Diagram.js 100% 0% 442 216 46.51%

Table 3 provides an overview of smell survivability across
the analyzed projects. It reports the percentage of smells that
were removed or remained active at the time of the last ana-
lyzed commit, along with the average survivability of smells
expressed in both days and commits.

Based on the percentage of smells removed, the projects can
be grouped into three categories: those with a high removal
rate (over 70%), such as JSDoc, ExcelJS, and Axios, totaling 32
projects; those with a low removal rate (below 45%), including
Handlebars.js and Prepack, comprising 10 projects; and those
with a moderate removal rate (between 45% and 70%), such as
Piskel and Gridsome, accounting for 8 projects.

The survivability values reveal notable differences in how
long smells persist across codebases. Projects such as Han-
dlebars.js and Prism exhibit some of the highest mean surviv-
ability—exceeding 3,000 days and over 1,000 commits. This
suggests that smells in these systems are not only tolerated, but
may become deeply embedded in the codebase, possibly due
to architectural inertia, limited refactoring, or a perception that
they are not harmful enough to warrant prompt removal.

At the opposite end, projects like Sweetalert2, Just, and Un-
git exhibit extremely low survivability—sometimes under 100
days or commits—indicating the need for more proactive main-
tenance, where issues are addressed promptly. This may reflect
agile development practices or stronger emphasis on quality as-
surance.

Interestingly, projects with moderate removal rates exhibit
mixed survivability trends. For example, Piskel and Gridsome
show relatively high survivability in both time and number of
commits, suggesting that although smells are eventually re-
moved, they often persist for a considerable period.

Looking at the percentage of smells introduced at file cre-
ation (last column), we observe three distinct groups: 14
projects introduced fewer than 45% of their smells from the be-
ginning, 17 projects introduced between 45% and 70%, and 19
projects introduced more than 70%. When cross-referencing
these groups with the smell removal categories, a clear pat-
tern emerges: projects with low removal rates tend to also have
a higher proportion of smells introduced from day one (aver-
age 76%), while those with moderate or high removal rates
introduce significantly fewer smells at file creation (averaging
around 53–56%). This may suggest that projects with more per-
sistent smells also suffer from initial code quality issues, which
in turn may hinder long-term maintainability.

Results RQ1

The results show that code smell survivability varies
significantly across projects, with some removing over
70% of smells promptly, while others allow them to per-
sist for years. Projects like Handlebars.js exhibit high
survivability, indicating limited refactoring or tolerance
of smells, whereas others like Sweetalert2 address is-
sues quickly. Additionally, projects with low smell re-
moval rates tend to introduce more smells at file cre-
ation, suggesting a link between poor initial code qual-
ity and long-term maintainability challenges.

4.2. RQ2 – Risk Coefficients and Significance.

Considering RQ2, the results of the survivability analysis re-
veal three distinct patterns. In 18 projects, files affected by a
code smell exhibit a higher probability of long-term survival
compared to their non-smelly counterparts. This may indi-
cate that smelly components are modified or refactored less fre-
quently, potentially due to their perceived stability or neglect. In
contrast, 21 projects display the opposite behavior: smelly files
are more likely to fail or be removed earlier, suggesting lower
survivability and possibly higher maintenance effort. In the re-
maining 11 projects, no substantial difference in survivability
is observed between smelly and non-smelly files, indicating a
similar evolutionary behavior.

These findings partially support the hypothesis that code
smells can be associated with fault-proneness. However, the
variation across projects highlights that the impact of code
smells on survivability is not consistent and may depend on
several contextual factors, such as the type of smell, system
architecture, team practices, or project lifecycle.

Figure 3 illustrates representative examples of each of the
three observed trends. The full set of survival plots, along
with project-level classifications and detailed statistical results,
is available in our publicly accessible replication packageX.
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Figure 3: TBD.

Results RQ2

The survivability analysis reveals three patterns: (1) in
18 projects, smelly files survive longer, possibly due to
neglect or perceived stability; (2) in 21 projects, they are
more likely to be removed earlier, indicating lower sur-
vivability and higher maintenance; (3) in 11 projects, no
significant difference is observed. These mixed results
suggest that the impact of code smells on survivability
is context-dependent and not uniform across projects.

4.3. RQ3 – On the fault-proneness in files containing smells.

Table 4 presents the results of the COX proportional haz-
ards model applied to each code smell. As shown in the ta-
ble, different smells exhibit varying degrees of impact on fault
proneness. For example, “Long Methods” and “Nested Call-
backs” consistently show higher risk coefficients across multi-
ple projects, suggesting a stronger correlation with fault-prone
components. In contrast, smells such as “Complex Switch” and
“Assign in Condition” tend to display lower or more variable
coefficients, indicating a weaker or more context-dependent re-
lationship with software faults.

These findings align with the results reported by Johannes et
al. [1] who identified “Variable Re-assign” as the most criti-
cal smell, associated with a 34.60% increase in the likelihood
of fault introduction. Similarly, “Complex Code” and “Assign-
ment in Conditional Statements” were linked to elevated fault
risks of 31.40% and 30.00%, respectively, reinforcing their rel-
evance as indicators of error-proneness and maintenance diffi-
culties.

On the other hand, smells such as “Depth Smell” and “Com-
plex Switch Case” were found to have lower associated risk lev-
els, with average fault probabilities of 16.25% and 17.60%. Al-
though these smells may still affect code readability and main-
tainability, their actual contribution to fault occurrence appears
notably less severe compared to the more impactful smells.

Results RQ3

The results indicate that different code smells have vary-
ing levels of impact on fault-proneness. The three most
impactful smells are “Variable Re-assign”, “Complex
Code”, and “Assignment in Conditional Statements”,
each associated with a notably higher risk of fault in-
troduction. These findings are consistent with prior re-
search, reinforcing the idea that certain smells are more
strongly correlated with software defects.

5. Discussion and Implications

6. Threats to Validity

In this section, we elaborate on threats to validity and the
mitigation strategies we applied.

Construct Validity. The main threat is related to the re-
lationship between theory and observation. As in the origi-
nal work, we estimated the number of previous faults in each
source code file by identifying those committed during fault-
fixing revisions. This identification was performed through
mining commit logs for specific keywords (e.g., “fix”, “#”, and
“gh-”) and referencing bug IDs. While effective, this heuris-
tic approach is not without limitations. It may fail to detect
fault-fixing commits when messages are omitted, keywords are
misspelled, or bug identifiers are recorded in uncommon for-
mats. Nonetheless, this method has been widely adopted and
validated in prior software engineering studies (e.g., Jaafar et
al. [19]; Shihab et al. [20]), lending credibility to its use.

Similarly, the SZZ algorithm used to trace fault-inducing
commits is known to have imperfections. To mitigate these,
we applied the improvements recommended by Da Costa [18],
including the exclusion of commits that only modify blank or
comment lines, as well as those occurring too far from the issue
date. In line with the original study, we limited our analysis to
the master branch of each project. Although this branch often
consolidates the evolution of all others, temporal mismatches
in the introduction of smells or bugs across branches could still
introduce minor inaccuracies. However, we believe this effect
is marginal within the scope of our data.

When reconstructing smell genealogies, we set a 70% simi-
larity threshold to determine whether two instances of the same
smell type should be considered equivalent. While this thresh-
old may occasionally conflate distinct smells or separate similar
ones, we reused the same threshold and settings defined in the
original work.

Internal Validity. We adopted the same metric extraction
approach as the original work, relying on the AST generated by
ESLint. Consequently, our findings are inherently dependent
on the correctness and precision of ESLint’s analysis. How-
ever, we maintain a reasonable level of confidence in its re-
liability. As in the original study, we employed a logarith-
mic link function for certain covariates in the survival analysis.
While we acknowledge that other link functions might yield
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Table 4: Risk Coefficient for Smells.

Project Long Methods Depth Smell Complex Code Lengthy Lines Long Param. List Nested Callbacks Complex Switch This Assign Chained Methods Var Re-assign Extra Bind Assign in Cond.
JSDoc 0.344 2.254e-06 2.364 0.885 0.885 0.829 0.771 0.631 0.584 1.31 4.538e-05 0.64
ExcelJS 3e-07 8.271e-07 2.98e-07 0.108 8.258e-07 1.083 3.485e-08 3.63e-08 0.034 0.0212 – –
Axios 0.308 6.131e-06 0.527 0.168 0.095 0.252 0.268 0.1 0.167 0.158 – 0.198
Chrome Extensions Samples 0.569 0.83 0.57 0.232 0.711 0.616 0.601 0.59 0.535 0.431 0.536 0.563
Flux 2.986e-07 2.994e-07 2.981e-07 0.237 1.052e-07 1.047e-07 3.754e-08 1.079e-07 3.595e-08 1.192e-08 – 6.13e-06
Blockly Samples 0.417 0.188 0.243 0.227 0.148 0.183 0.198 0.253 0.188 0.212 0.143 0.199
Highlight.js 1.0 0.000001 0.759 0.688 0.688 0.726 0.799 0.784 0.711 0.812 0.602 0.727
Handlebars.js 0.345 0.419 1.270 0.614 0.614 0.702 0.776 0.682 0.654 0.632 0.544 0.875
Jasmine 0.118 0.000002 0.373 0.199 0.199 0.234 0.280 0.175 0.289 0.327 0.154 0.198
Prism 1.020 0.004 1.329 1.051 1.051 0.931 1.182 1.208 1.112 1.275 0.782 0.563
Async 0.683 0.418 0.351 0.171 0.171 0.199 0.236 0.122 0.204 0.235 0.158 0.138
Karma 0.441 0.504 0.504 0.441 0.441 0.504 0.441 0.441 0.441 0.504 0.441 0.504
Browserify 0.283 0.504 0.504 0.283 0.283 0.504 0.283 0.283 0.283 0.504 0.283 0.504
JQuery Validation 1.001 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498
Emotion 0.181 0.427 0.427 0.181 0.181 0.427 0.181 0.181 0.181 0.427 0.181 0.181
Forever 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055
Gulp 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207
Validator.js 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159
LocalForage 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
Markdown 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328
Popmotion 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170
Stf 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891
Reactstrap 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261
Gpu.js 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
Sweetalert2 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155
Nodemailer 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084
Fetch 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
Anime 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235
Standard 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369
Sortable 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171
Winston 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384
Ws 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399
Yargs 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289 0.289
Piskel 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525
Katex 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161
Prepack 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Ungit 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139
Recompose 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214
Places 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098
Just 0.06 – 8.271e-07 0.06 – 8.271e-07 3.808e-08 0.06 – 8.271e-07 – –
Razzle 1.669e-05 1.669e-05 1.669e-05 0.356 – – 1.669e-05 – 2.252e-06 0.37 – –
Bpmn-js 0.727 – 0.686 1.506 0.799 0.613 0.575 0.657 0.634 0.995 1.669e-05 –
Artillery 2.251e-06 – 2.255e-06 0.103 2.255e-06 3.227e-07 4.538e-05 4.538e-05 0.025 0.038 – –
Gridsome 6.135e-06 – – 0.63 – – – 6.135e-06 6.135e-06 1.845 1.669e-05 –
Parsley.js 0.131 3.012e-07 2.99e-07 0.536 0.251 0.685 2.248e-06 0.146 0.38 0.581 – 0.099
NLP.js 4.538e-05 4.538e-05 4.538e-05 5.384 1.154 7.927 38.104 7.457 4.538e-05 1.154 – –
Aura 1.266 2.435 0.813 0.842 0.577 3.876e-08 0.813 1.132 0.538 0.822 – 0.75
VisBug 1.668e-05 – 1.668e-05 6.124e-05 – 1.668e-05 1.668e-05 1.668e-05 – 1.668e-05 – –
A Dark Room 3.799e-08 3.696e-08 3.665e-08 0.105 3.737e-08 3.834e-08 1.171e-08 – 0.049 0.089 – –
Diagram-js 1.289 1.387 1.255 3.542 1.125 0.999 1.323 1.434 1.66 3.019 – 6.324

improved model fit for specific variables, the results of non-
proportionality tests indicate that the models remain appropri-
ate for our dataset.

External Validity. We analyzed 50 large-scale JavaScript
projects, all of which are open-source. While these projects
span diverse domains and vary in size, the scope remains lim-
ited. Therefore, additional validation involving a broader range
of JavaScript systems and a more comprehensive set of code
smell types would be beneficial.

Conclusion Validity. Threats to conclusion validity in this
replication primarily concern the statistical techniques and in-
terpretations used to support our findings. As in the original
study, we relied on the Cox Proportional Hazards Model to as-
sess the relationship between code smells and fault-proneness.
While this model is well-established and suitable for survival
analysis, its conclusions depend heavily on correct specifica-
tion and the validity of underlying assumptions. We performed
non-proportionality tests to verify model fit, and the results sug-
gest that the assumptions were adequately met.

7. Conclusions
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