
How Reusability Mechanisms and Built-in
Functions Impact Code Quality Over Time

Ph.D. Candidate: Giammaria Giordano

University of Salerno, Italy

Department of Computer Science 
Software Engineering (SeSa) Lab

giagiordano@unisa.it

@GiammariaGiord1

https://giammariagiordano.github.io/giammaria-giordano/

Curriculum: Internet of Things and Smart Technologies

Advisors: Prof. Fabio Palomba, Prof. Filomena Ferrucci

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference platform
from the Ariane 4, but the early part of the Ariane 5's flight path
differed from the Ariane 4 in having higher horizontal velocity
values. This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be unexpectedly high.

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference platform
from the Ariane 4, but the early part of the Ariane 5's flight path
differed from the Ariane 4 in having higher horizontal velocity
values. This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be unexpectedly high.

On 4 June 1996, the first flight of the Ariane 5
launcher failed, only about 40 seconds after

initiation of the flight sequence

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

million
$370

“Software design tends to erode over time because of
continuous changes and increasing complexity”

“Evolution is an essential property of real-world
software. As your needs change, your criteria for
satisfaction change.”

https://www.wfpusa.org/articles/how-much-would-it-cost-to-end-world-hunger/ - World Food Program USA

1,179,038
African children fed for a year

https://www.wfpusa.org/articles/how-much-would-it-cost-to-end-world-hunger/

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference platform
from the Ariane 4, but the early part of the Ariane 5's flight path
differed from the Ariane 4 in having higher horizontal velocity
values. This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be unexpectedly high.

On 4 June 1996, the maiden flight of the Ariane 5
launcher failed, only about 40 seconds after

initiation of the flight sequence

The analysis showed that the software was prone to
defects by presenting code quality issues

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference platform
from the Ariane 4, but the early part of the Ariane 5's flight path
differed from the Ariane 4 in having higher horizontal velocity
values. This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be unexpectedly high.

On 4 June 1996, the maiden flight of the Ariane 5
launcher failed, only about 40 seconds after

initiation of the flight sequence

The analysis showed that the software was prone to
defects by presenting code quality issues

The analysis showed that the software was prone to defects by
presenting code quality issues

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference platform
from the Ariane 4, but the early part of the Ariane 5's flight path
differed from the Ariane 4 in having higher horizontal velocity
values. This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be unexpectedly high.

On 4 June 1996, the maiden flight of the Ariane 5
launcher failed, only about 40 seconds after

initiation of the flight sequence

The analysis showed that the software was prone to
defects by presenting code quality issues

The analysis showed that the software was prone to defects by
presenting code quality issues

The company had reused code from the previous rocket but did
not do the necessary maintenance activities

“Software design tends to erode over time because of
continuous changes and increasing complexity”

“Evolution is an essential property of real-world
software. As your needs change, your criteria for
satisfaction change.”

If the company had used tools to measure
code quality variation over time, this

accident probably would not have occurred

Could it have been prevented?

Code Quality

Code Smells

Defect Proneness

Maintenance Effort

 symptom of poor design that can lead to increased
effort during both maintenance and evolution activities

Maintenance effort required to fix faults

The propensity of a software system to have a defect

Code Quality Attributes

Code Quality

Code Smells

Defect Proneness

Maintenance Effort

 symptom of poor design that can lead to increased
effort during both maintenance and evolution activities

Maintenance effort required to fix faults

The propensity of a software system to have a defect

Code Quality Attributes

Code Quality

Code Smells

Defect Proneness

Maintenance Effort

 symptom of poor design that can lead to increased
effort during both maintenance and evolution activities

Maintenance effort required to fix faults

The propensity of a software system to have a defect

Code Quality Attributes

Code Quality

Code Smells

Defect Proneness

Maintenance Effort

 symptom of poor design that can lead to increased
effort during both maintenance and evolution activities

Maintenance effort required to fix faults

The propensity of a software system to have a defect

Code Quality Attributes

“Software design tends to erode over time because
of continuous changes and increasing complexity”

“Evolution is an essential property of real-world
software. As your needs change, your criteria for
satisfaction change.”

“Software design tends to erode over time because
of continuous changes and increasing complexity”

“Evolution is an essential property of real-world
software. As your needs change, your criteria for
satisfaction change.”

“Software design tends to erode over time because of
continuous changes and increasing complexity”

“Evolution is an essential property of real-world
software. As your needs change, your criteria for
satisfaction change.”

…But in which manners do developers perform
maintenance and evolutionary activities?

Built-in
Features

Functionality that is inherently are available
within the programming language itself

Usually optimized for efficiency, ease of use, and
integration with the language's overall design

Simplify complex developers’ tasks reducing
the effort during maintenance and

evolutionary activities

Built-in Features

Built-in
Features

Functionality that is inherently are available
within the programming language itself

Usually optimized for efficiency, ease of use, and
integration with the language's overall design

Simplify complex developers’ tasks reducing
the effort during maintenance and

evolutionary activities

Built-in Features

Built-in
Features

Functionality that is inherently are available
within the programming language itself

Usually optimized for efficiency, ease of use, and
integration with the language's overall design

Simplify complex developers’ tasks reducing
the effort during maintenance and

evolutionary activities

Built-in Features

Built-in
Features

Functionality that is inherently are available
within the programming language itself

Usually optimized for efficiency, ease of use, and
integration with the language's overall design

Simplify complex developers’ tasks reducing
the effort during maintenance and

evolutionary activities

Built-in Features

Built-in Features

Modularization
Inheritance and Delegation

Design Patterns Frameworks
Parameterization

Code Generation

Plugins and Extensions

Legacy System Wrapping Service Oriented Systems

Reusability Mechanisms

Modularization
Inheritance and Delegation

Design Patterns Frameworks
Parameterization

Code Generation

Plugins and Extensions

Legacy System Wrapping Service Oriented Systems

Reusability Mechanisms

Modularization
Inheritance and Delegation

Design Patterns Frameworks
Parameterization

Code Generation

Plugins and Extensions

Legacy System Wrapping Service Oriented Systems

Reusability Mechanisms

Code Quality: State-of-the-art

Code Quality: State-of-the-art

Code Quality: State-of-the-art

Code Quality: State-of-the-art

Code Quality: State-of-the-art

The code quality variation over time is rarely considered

Code Quality: State-of-the-art

There is a lack of coverage of how code instruments impact
code quality

The code quality variation over time is rarely considered

Ultimate Goal

Ultimate Goal

The goal of this Ph.D. project was to perform a
step toward Evolutionary Code Quality to
provide a framework that practitioners can use to
perform quality assurance over time

Research
Goal

Research Goal

Understanding How Reusability Mechanisms and Built-in Features Affect
Code Quality Over Time

Large-Scale Mining Software Repository Techniques

Why MSR Techniques?

MSR techniques allow us to analyze code quality by
considering how the repository evolves over time

Challenges

Challenges

Multiple Families of Software Systems

Different Code Quality Attributes

Challenges

Different Code Quality Attributes

Multiple Code Instruments

Multiple Families of Software Systems

Challenges

Different Code Quality Attributes

Multiple Code Instruments

Multiple Families of Software Systems

Challenges

Different Code Quality Attributes
Multiple Code Instruments

Multiple Families of Software Systems

Challenges

Software analysis, evolution,
and Reengineering (SANER)

Empirical Software
Engineering (EMSE)

International Conference on
Software Process and Product

Measurement (MENSURA)

Mining Software Repository
(MSR) - (Registered-Report) Euromicro SEAA 2023

Challenges

Software analysis, evolution, and
Reengineering (SANER) Empirical Software Engineering (EMSE) International Conference on Software Process and

Product Measurement (MENSURA)
Mining Software Repository (MSR) -

(Registered-Report)

Challenges

Empirical Software Engineering (EMSE) International Conference on Software Process and
Product Measurement (MENSURA)

Mining Software Repository (MSR) -
(Registered-Report) Euromicro SEAA 2023

Investigate Multiple Code Quality Attributes Over Time

Software analysis, evolution, and
Reengineering (SANER)

International Conference on Software Process and
Product Measurement (MENSURA)

Mining Software Repository (MSR) -
(Registered-Report)Euromicro SEAA 2023

Investigate Multiple Code Quality Attributes Over Time

Code Smells

Empirical Software Engineering (EMSE)

Investigate Multiple Code Quality Attributes Over Time

Defect Proneness and Maintenance Effort

Multiple Code Instruments

Inheritance and Delegation

Software analysis, evolution, and
Reengineering (SANER) Empirical Software Engineering (EMSE)

Multiple Code Instruments

Design Patterns Built-in Features

Euromicro SEAA 2023

Multiple Code Instruments

Design Patterns Built-in Features

International Conference on Software Process and
Product Measurement (MENSURA)

Multiple Families of Software Systems

Traditional Systems

Software analysis, evolution, and
Reengineering (SANER)Empirical Software Engineering (EMSE)Euromicro SEAA 2023

Multiple Families of Software Systems

AI-enabled Systems

International Conference on Software Process and
Product Measurement (MENSURA)

Mining Software Repository (MSR) -
(Registered-Report)

Research
Method

Overview

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial
reference platform from the Ariane 4, but the early
part of the Ariane 5's flight path differed from the
Ariane 4 in having higher horizontal velocity values.
This caused an internal value BH (Horizontal Bias)
calculated in the alignment function to be

More in Detail…

Since the crash of ARIANE 5 was caused by a
bug due to incorrect code reuse during a

maintenance task, we will use the paper on how
reusability mechanisms affect defect

proneness and maintenance effort to give a
general overview of how our work was conducted

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Defect4J

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Defect4J Source
Code

12 Java Projects

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Defect4J Source
Code

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Dataset

Dataset

Dataset

Defect4J

CK

InhMetrics

PyDriller

Source
Code

44,000 releases

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Dataset

Dataset

Dataset

Defect4J

CK

InhMetrics

PyDriller

Source
Code

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Source
Code

Dataset

Data
Integration

How does the use of 
 source code reusability 

 mechanisms vary?

Dataset

Dataset

Defect4J

CK

InhMetrics

PyDriller

How do source code 
 reusability mechanisms  
 impact fault-proneness? 

How do source code  
 reusability mechanisms 

 impact code churn?

Statistical
Model

Statistical
Model

Reusability
Metrics

Backup SlideOn the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort

Dataset

Data
Integration

How does the use of 
 source code reusability 

 mechanisms vary?

Dataset

Dataset

Defect4J

CK

InhMetrics

PyDriller

How do source code 
 reusability mechanisms  
 impact fault-proneness? 

How do source code  
 reusability mechanisms 

 impact code churn?

Statistical
Model

Statistical
Model

Reusability
Metrics

Statistical Model

Source
Code

RG: Reusability Evolves Over Time

Increase/Decrease

RG: Reusability Evolves Over Time

Stable

Commons-Codec Jackson-Core

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Commit

Er
ed

ita
rie

tà
 d

i im
pl

em
en

ta
zio

ne

0 500 1000 1500

0.
00

11
0

0.
00

12
0

0.
00

13
0

0.
00

14
0

Commit

Er
ed

ita
rie

tà
 d

i im
ple

m
en

ta
zio

ne

Commons-Codec Jackson-Core

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Commit

Er
ed

ita
rie

tà
 d

i im
pl

em
en

ta
zio

ne

0 500 1000 1500

0.
00

11
0

0.
00

12
0

0.
00

13
0

0.
00

14
0

Commit

Er
ed

ita
rie

tà
 d

i im
ple

m
en

ta
zio

ne

RG: Reusability Evolves Over Time

Steady-Increasing

Commons-Collections Commons-JxPath

0 500 1000 1500 2000 2500 3000 35000.
00

05
0.

00
10

0.
00

15
0.

00
20

0.
00

25
0.

00
30

0.
00

35

Commit

Er
ed

ita
rie

tà
 d

i im
pl

em
en

ta
zio

ne

0 100 200 300 400 500 600

0.
00

20
0.

00
25

0.
00

30

Commit

Er
ed

ita
rie

tà
 d

i i
m

pl
em

en
ta

zi
on

e

Commons-Collections Commons-JxPath

0 500 1000 1500 2000 2500 3000 35000.
00

05
0.

00
10

0.
00

15
0.

00
20

0.
00

25
0.

00
30

0.
00

35

Commit

Er
ed

ita
rie

tà
 d

i im
ple

m
en

ta
zio

ne

0 100 200 300 400 500 600

0.
00

20
0.

00
25

0.
00

30

Commit

Er
ed

ita
rie

tà
 d

i im
pl

em
en

ta
zio

ne

RG: Reusability Evolves Over Time

Decrease/Increase

Commons-Compress

0 500 1000 1500 2000 2500 3000

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Commit

Er
ed

ita
rie

tà
 d

i im
pl

em
en

ta
zio

ne

RG: Reusability Evolves Over Time

Steady-IncreasingDecrease/Increase Stable Increase/Decrease

Programming Abstraction evolves over time, but
not in a statistically significant way

Reusability Mechanisms On Defect Proneness and Maintenance Effort

The class hierarchies tend to influence the
likelihood of defective source code

Limited connection between code quality
metrics and defect-proneness

Inheritance Delegation

Reusability metrics mostly reduce the effort
required to fix defects

Research Method Overview

GitHub Mining

Tool
Dataset

Data
Integration

Data
Analysis

Research
Question

Data
Analysis

Data
Analysis

Research
Question

Research
Question

Dataset

Dataset

Tool

Tool

Research MethodOn the Evolution of Inheritance and Delegation Mechanisms and Their Impact on Code Quality

time including multiple families of software systems

Software analysis, evolution, and Reengineering
(SANER)

Inheritance and Delegation and Code Smells

Inheritance and Delegation Most of Time
Statistically Contribute to the Decrease

of Code Smell Severity

3 Java Systems and 15 releases analyzed

Research MethodThe Yin and Yang of Software Quality: On the Relationship between Design Patterns and Code Smells

Design Patterns and Code Smells

The presence of some design patterns
can increment the probability of the rise

of specific code smells

15 Java Systems and 543 releases analyzed

Euromicro SEAA 2023

Research MethodUnderstanding Developer Practices and Code Smells Diffusion in AI-Enabled Systems

time including multiple families of software systems

Built-in features and Code Smells

The built-in features of Python often are
related to the rise of code smells

 200 Python AI-enabled Systems and 10,611
releases analyzed

Traditional Code Smells analyzed

International Conference on Software Process and
Product Measurement (MENSURA)

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference
platform from the Ariane 4, but the early part of the
Ariane 5's flight path differed from the Ariane 4 in having
higher horizontal velocity values. This caused an internal
value BH (Horizontal Bias) calculated in the alignment
function to be unexpectedly high.

At the end of the story…

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference
platform from the Ariane 4, but the early part of the
Ariane 5's flight path differed from the Ariane 4 in having
higher horizontal velocity values. This caused an internal
value BH (Horizontal Bias) calculated in the alignment
function to be unexpectedly high.

At the end of the story…
If they had monitored attributes related to class hierarchy they

would have decreased the likelihood of defects in the code

ARIANE 5: Flight 501 Failure

The Ariane 5 reused the code from the inertial reference
platform from the Ariane 4, but the early part of the
Ariane 5's flight path differed from the Ariane 4 in having
higher horizontal velocity values. This caused an internal
value BH (Horizontal Bias) calculated in the alignment
function to be unexpectedly high.

At the end of the story…
If they had monitored attributes related to class hierarchy they

would have decreased the likelihood of defects in the code

if they had made more optimal use of reuse mechanisms they
would have decreased smell and maintenance effort

Key Findings

Key Findings

Key Findings

A correct use of inheritance and delegation, most time, statistically
significantly increases code quality attributes

Key Findings

A correct use of inheritance and delegation, most time, statistically
significantly increases code quality attributes

The CK metrics show a limited connection to defect proneness

Key Findings

A correct use of inheritance and delegation, most time, statistically
significantly increases code quality attributes

Design Patterns are not always the best solution to increase code quality

The CK metrics show a limited connection to defect proneness

Future Work

Research MethodWhen Code Smells Meet ML: On the Lifecycle of ML-specific Code Smells in ML-enabled systems

time including multiple families of software systems

ML-specific Code Smells

Code Smells related to the misuse of
third-party libraries that enable ML
components are the most frequent

337 Python ML-enabled Systems and
400,000 releases will be analyzed

ML-specific Code Smells

Mining Software Repository (MSR) -
(Registered-Report)

Future Work

Future Work

Automatic just-in-time refactoring tools able to improve code quality attributes
based on the specific domain where software system work

Future Work

Automatic just-in-time refactoring tools able to improve code quality attributes
based on the specific domain where software system work

Analyzing different aspects related to Code Quality for Smart Systems
(e.g., ML-enabled Systems or IoT Systems) such as Privacy and Security Aspects

Implications

Implications

Implications

Practitioners need to be informed on the benefits and drawbacks of the use of
reusability mechanisms during software maintenance and evolution activities

Implications

Practitioners need to be informed on the benefits and drawbacks of the use of
reusability mechanisms during software maintenance and evolution activities

The SE community needs to conduct further research to identify more representative
metrics for measuring code quality

Research
Direction

Research Direction

Research Direction

Software Engineering community needs to study quality aspects by considering
programming languages other than Java (e.g., Python) to have a greater understanding
of how quality attributes vary over time

Research Direction

Software Engineering community needs to study quality aspects by considering
programming languages other than Java (e.g., Python) to have a greater understanding
of how quality attributes vary over time

Software Engineering community needs to propose mechanisms and release
frameworks to facilitate the paradigm shift

Sum Up

giagiordano@unisa.it

@GiammariaGiord1

https://giammariagiordano.github.io/giammaria-giordano/

Thanks!

Backup Slide

Systems that Intensively
Use Built-in Features and

Code Smells

RG: Systems that Intensively Use Built-in Features and Code Smells

The Two Code Smells Most Detected (Complex
List Comprehension and Long Ternary Conditional)

are due to sub-optimal use of Built-in Features

70% of the Cases Code Smells are Introduced
Due To Evolutionary Activities

Code
SmellsBuilt-in Code Smells

Design Patterns
On Code Smells

GitHub Source
Code

Source
Code RepoDriller ReleasesReleases

D.P.
Detector

Data
Integration

Co-occurrence
DP and CS

Answer
RQ1

Statistical
Model

Answer
RQ2

Code Smell
Detector

On the Relationship between Design Patterns and Code Smells

Co-occurrence of Design Patterns and Code Smells

In all projects where exists a  
co-occurrence between Design Patterns and Code Smells, the classes

implementing State/Strategy are affected by God Class

In 8 projects the Design Pattern 
State/Strategy was also affected by 

Spaghetti Code, while in other 4 projects Complex Class was identified

On the Relationship between Design Patterns and Code SmellsCo-occurrence of Design Patterns and Code Smells

60%
of projects are characterized by a statistical
correlation between Design Patterns and 

Code Smells

On Design Patterns and how they affect Code Smells

Adapter/Command

God Class

Bridge

Component

Singleton

Factory Method

Template Method

State/Strategy

Observer

Proxy

Decorator

+ Low Positive Statistical Correlation 
++ Medium Positive Statistical Correlation 
+++ Strong Positive Statistical Correlation
- Low Negative Statistical Correlation 
- - Medium Negative Statistical Correlation 
- - - Strong Negative Statistical Correlation

+ + +
+ + +
+ + +
+ + +

Spaghetti Code Complex Class

- -

-

+ + +
+ + +
+ + +

Reusability
Mechanisms On

Code Smells

RG: Reusability Mechanisms On Code Smells Over Time

Reusability mechanisms do not statistically
influence the defect-proneness of source code

Limited connection between code quality
metrics and defect-proneness

Inheritance Delegation

AI-Specific Code
Smells

NICHE PyDriller

ML-CS
Detector

Commit
History

Integration

RQ0: Prevalence of ML-CS

RQ1: When ML-CS are
introduced

RQ2: What tasks were
performed during the

introduction

RQ3: When and how ML-CS
are removed

RQ4: How long
ML-CS survive

Research Process

Code Smell Detector

14
ML-specific code smells will be

detected
25

Diffusion

What will we investigate?

To what extent
do ML-CS affect

ML-projets?

16

Diffusion Introduction

What will we investigate?

In which tasks?

When are smells
introduced?

17

Diffusion Introduction Removal

What will we investigate?

In which tasks?

When smells are
removed?

18

Diffusion Introduction Removal Survivability

What will we investigate?

How long do
ML-CS survive?

19

Understanding
Developer Practices

and Code Smells
Diffusion in 

AI-Enabled Systems

Research Process

Answer
RQ1

NICHE

Answer
RQ2

PyDriller

Code Smells
Diffusion

Random
Sampling

Activities that
arise Code

Smells

Releases

PySmell

Analyze
Commit
Message

Co-occurrence of Design Patterns and Code Smells

On the frequency of Code Smells in 
AI-Enabled Systems

Co-occurrence of Design Patterns and Code SmellsOn the frequency of Code Smells

0

400

800

1200

1600

Complex
 List

 C
ompreh

en
sio

n

Long Te
rnary

 C
onditio

nal

Long Para
mete

r L
ist

Long M
eth

od

Long Elem
en

t C
hain

Long Lam
bda F

uncti
on

Long M
es

sa
ge C

hain

Long Sco
pe C

hain

121824385255
226

1.465

Co-occurrence of Design Patterns and Code SmellsOn the frequency of Code Smells

0

400

800

1200

1600

Complex
 List

 C
ompreh

en
sio

n

Long Te
rnary

 C
onditio

nal

Long Para
mete

r L
ist

Long M
eth

od

Long Elem
en

t C
hain

Long Lam
bda F

uncti
on

Long M
es

sa
ge C

hain

Long Sco
pe C

hain

121824385255
226

1.465Code Smells related to Object-Oriented
programming languages (e.g., complex class) are

never detected

Co-occurrence of Design Patterns and Code SmellsOn the frequency of Code Smells

0

400

800

1200

1600

Complex
 List

 C
ompreh

en
sio

n

Long Te
rnary

 C
onditio

nal

Long Para
mete

r L
ist

Long M
eth

od

Long Elem
en

t C
hain

Long Lam
bda F

uncti
on

Long M
es

sa
ge C

hain

Long Sco
pe C

hain

121824385255
226

1.465Code Smells related to Object-Oriented
programming languages (e.g., complex class) are

never detected

The most two frequent smells are related to
syntactic contractions to reduce the lines of code

Co-occurrence of Design Patterns and Code SmellsOn the frequency of Code Smells

0

400

800

1200

1600

Complex
 List

 C
ompreh

en
sio

n

Long Te
rnary

 C
onditio

nal

Long Para
mete

r L
ist

Long M
eth

od

Long Elem
en

t C
hain

Long Lam
bda F

uncti
on

Long M
es

sa
ge C

hain

Long Sco
pe C

hain

121824385255
226

1.465Code Smells related to Object-Oriented
programming languages (e.g., complex class) are

never detected

The most two frequent smells are related to
syntactic contractions to reduce the lines of codeThe results partially confirm previous work

Co-occurrence of Design Patterns and Code Smells

80%
Of the projects were affected at least once by a

Complex List Comprehension

Co-occurrence of Design Patterns and Code Smells

On the density of Code Smells in 
AI-Enabled Systems

Co-occurrence of Design Patterns and Code SmellsOn the density of Code Smells

We observed that the
density of Code
Smells does not
follow a specific
trend of increase/
decrease over time

Code Smell density for the project MindMeld

Co-occurrence of Design Patterns and Code SmellsOn the density of Code Smells

We observed that the
density of Code
Smells does not
follow a specific
trend of increase/
decrease over time

Code Smell density for the project MindMeld

The presence and removal appear to be
influenced by external factors

Co-occurrence of Design Patterns and Code Smells

On the survival of Code Smells in 
AI-Enabled Systems

Co-occurrence of Design Patterns and Code SmellsOn the survival of Code Smells

In some cases, we found
that Code Smells
survived for a time
period of 6 years!

 Survival of Complex List Comprehension

Co-occurrence of Design Patterns and Code SmellsOn the survival of Code Smells

In some cases, we found
that Code Smells
survived for a time
period of 6 years!

 Survival of Complex List Comprehension

Complex List Comprehension is not only the most
frequent but also one of the longest-lived

Co-occurrence of Design Patterns and Code Smells

On the activities that led developers to
introduce Code Smells in 

AI-Enabled Systems

Co-occurrence of Design Patterns and Code Smells

70%
of Code Smells has been introduced due to

Evolutionary Activities

Co-occurrence of Design Patterns and Code Smells

70%
of Code Smells has been introduced due to

Evolutionary Activities

In most cases the introduction of code smells is
due to merge operations

NICHE Dataset

572 ML projects

“engineered” and “not engineered”
according to 8 dimensions including CI

 Architecture

 Community

 Continuous Integration

 Documentation

 History

 Issues

 License

 Unit Testing

ML Projects

Activities

I have co-advised 17 B.Sc. and 1 M. Sc. students in Computer Science at the University of Salerno

International Journal Papers
J01 - Giordano G., Ferrucci, F., and Palomba, F. (2022). On the Use of Artificial Intelligence to Deal with Privacy in IoT Systems: A Systematic Literature Review. Journal of
Systems and Software (JSS), Vol. 193, 111475

J02- Amato, F., Cicalese, M., Contrasto,L., Cubicciotti, G., D’Ambola, G., LaMarca, A., Pagano, G., Tomeo, F., Robertazzi, G. A., Vassallo, G., Acampora, G., Vitiello, A., Catolino,
G., Giordano, G., Lambiase, S., Pontillo, V., Sellitto, G., Ferrucci, F., and Palomba, F. (2023). QuantuMoonLight: A low-code platform to experiment with quantum machine
learning. SoftwareX, 22, 101399.

J03- Giordano, G., Festa, G., Catolino, G., Palomba, F., Ferrucci ,F., and Gravino,C., On the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance
Effort. Empirical Software Engineering (EMSE) 29, (2024)

International Conference Papers
C01 - Giordano, G., Fasulo, A., Catolino, G., Palomba, F., Ferrucci, F., and Gravino, C. On the Evolution of Inheritance and Delegation Mechanisms and Their Impact on Code
Quality. IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER)

C02 - Giordano, G., Palomba, F., and Ferrucci, F. A Preliminary Conceptualization and Analysis on Automated Static Analysis Tools for Vulnerability Detection in Android App. 48th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

C03- Giordano, G., Pontillo, V., Annunziata,G., Cimino, A., Ferrucci, F., and Palomba, F. How May Deep Learning Testing Inform Model Generalizability? The Case of Image
Classification. In Proceedings of the 15th Seminar on Advanced Techniques & Tools for Software Evolution (SATToSE)

C04 - Giordano, G., Sellitto, G., Sepe, A., Palomba, F., and Ferrucci, F. The Yin and Yang of Software Quality: On the Relationship between Design Patterns and Code Smells. 49th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

C05 - Giordano, G., Annunziata, De Lucia, A., and Palomba, F. Understanding Developer Practices and Code Smells Diffusion in AI-enabled software: A Preliminary Study.
International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement 2023

I reviewed over 50 papers among international conferences and journals (e.g., Journal of Systems and Software (JSS), Empirical Software Engineering
(EMSE), and Transactions on Software Engineering and Methodology (TOSEM))

Results

4 Reusability
Mechanisms

Patterns

RG: Reusability Evolves Over Time

Steady-IncreasingIncrease/Decrease Stable Decrease/Increase

RG: Reusability Evolves Over Time

Steady-IncreasingIncrease/Decrease Stable Decrease/Increase

The adoption of Programming Abstraction evolves
over time, but not in a statistically significant way

RG: Reusability Mechanisms On Code Smells Over Time

Reusability mechanisms do not statistically
influence the defect-proneness of source code

Limited connection between code quality
metrics and defect-proneness

Inheritance Delegation

Reusability
Mechanisms On

Code Smells

RG: Reusability Mechanisms On Code Smells Over Time

Design
Patterns

Programming

Abstractions

RG: Reusability Mechanisms On Code Smells Over Time

Programming

Abstractions

Inheritance and Delegation Most of Time
Statistically Contribute to the Decrease

of Code Smell Severity

RG: Reusability Mechanisms On Code Smells Over Time

A Considerable Number of Design
Patterns are Statistically Correlated with

the Emergence of Code Smells

Design
Patterns

Survivability
Code Smells

RG: Survivability Of Code Smells Over Time

Code SmellsSurvivability

RG: Survivability Of Code Smells Over Time

Our Results Indicate that Code Smells Can
Survive in Software Systems for Many Years

Code
SmellsSurvivability Code Smells

Reusability
Mechanisms On

Defect Proneness

RG: Reusability Mechanisms On Code Smells Over Time

DelegationInheritance

RG: Reusability Mechanisms On Code Smells Over Time

Reusability mechanisms do not statistically
influence the defect-proneness of source code

Limited connection between code quality
metrics and defect-proneness

Inheritance Delegation

RG: Reusability Mechanisms On Code Smells Over Time

Reusability mechanisms do not statistically
influence the defect-proneness of source code

Limited connection between code quality
metrics and defect-proneness

Delegation Inheritance

Previous research that considers the relationship between
quality metrics and defects should be reconsidered

Reusability
Mechanisms On

Maintenance Effort

RG: Reusability Mechanisms On Code Smells Over Time

DelegationInheritance

RG: Reusability Mechanisms On Code Smells Over Time

Reusability mechanisms statistically contribute
to reduce the effort required to fix a bug into

source code
Inheritance Delegation

Systems that Intensively
Use Built-in Features and

Code Smells

RG: Systems that Intensively Use Built-in Features and Code Smells

Code SmellsBuilt-in

RG: Systems that Intensively Use Built-in Features and Code Smells

The Two Code Smells Most Detected (Complex
List Comprehension and Long Ternary Conditional)

are due to sub-optimal use of Built-in Features

70% of the Cases Code Smells are Introduced
Due To Evolutionary Activities

Code
SmellsBuilt-in Code Smells

Maintenance Effort

Programming Abstractions
Code Smells

Evolutionary Activities Built-in
Design Patterns

Over Time
Code Quality

Defect Proneness

Code Quality Over Time

On the Evolution of Inheritance and Delegation Mechanisms
and Their Impact on Code Quality

The Yin and Yang of Software Quality: On the Relationship
between Design Patterns and Code Smells

Understanding Developer Practices and
Code Smells Diffusion in AI-Enabled Software

On the Adoption and Effects of Source Code Reuse
on Defect Proneness and Maintenance Effort

Key Findings

Key Findings

Code Quality Over Time

Programming Abstraction statistically
contributes to reducing the effort required to

fix a bug in source code

Programming Abstractions evolves over time,
but non in a statistically significant way

Programming Abstraction does not statistically
contribute to decrease the defect proneness

Inheritance and Delegation Most of Time
Statistically Contribute to the Decrease of

Code Smell Severity

A Considerable Number of Design Patterns are
Statistically Correlated with the Emergence of

Code Smells

The Two Code Smells Most Detected (Complex
List Comprehension and Long Ternary Conditional)

are due to sub-optimal use of Built-in Features

Background & Context

Background & Context

Cost

Background & Context

Cost

Time

Background & Context

Cost

Time

Effort

Background & Context

Program Abstraction Third-Party Libraries Design Patterns System Wrapping

Program Abstraction

Inheritance

Inheritance is the process by which
one class takes the property of
another class : inherit ing the
attributes and/or the behavior of the  
pre-existing classes

Implementation
Inheritance Specification Inheritance

}

public class A{
. . .

Public class B extend A {
. . .

}

Program Abstraction

Delegation

Delegation is the mechanism through which a
class uses an object instance of another
class by forwarding its messages and letting it
perform actions

}

public class A{

}

public int foo (int x) {
return b.bar(x);

State-of-The-Art

State-of-The-Art

Traditional Systems!

Research Gaps

Research Gaps

There is a lack of empirical knowledge on how
reusability mechanisms vary in complex systems

Research Gaps

There is a lack of empirical knowledge on how
reusability mechanisms vary in complex systems

Most studies on the impact of reusability on code quality
and reliability focused only on traditional systems

Problem Relevance

Traditional Systems Complex Systems

Problem Relevance

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

0

7,5

15

22,5

30

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

29,42
27,31

25,21
23,14

21,09
19,08

17,08
15,14

13,14
11,28

9,268,6

Number of IoT devices connected worldwide from 2019 to 2030 (in billions)

Problem Relevance

https://blog.softwaremill.com/how-to-adopt-artificial-intelligence-in-your-business-65d42e2293b9

-17500

0

17500

35000

52500

70000

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

59748

46519

34381

24381
16241

105296629406524201378

Revenues from the artificial intelligence market worldwide, from 2016 to
2025 (in millions U.S. Dollars)

Fill

Objective

The objective of this Ph.D.
project is to understand
what is the impact on code
quality and reliability in
Complex Systems

2 Research
Questions

Research Questions

What are the differences in terms of reusability
between traditional systems and complex systems?

What is the impact of software reuse on code quality
and reliability in complex systems?

Research Questions

Mixed Methods

What are the differences in terms of reusability
between traditional systems and complex systems?

What is the impact of software reuse on code quality
and reliability in complex systems?

Research Questions

Mixed Methods{
What are the differences in terms of reusability

between traditional systems and complex systems?
What is the impact of software reuse on code quality

and reliability in complex systems?

Research Questions

Mixed Methods

Mining Software Repository{
What are the differences in terms of reusability

between traditional systems and complex systems?
What is the impact of software reuse on code quality

and reliability in complex systems?

Research Questions

Mixed Methods

Mining Software Repository
Qualitative Analyses{

What are the differences in terms of reusability
between traditional systems and complex systems?

What is the impact of software reuse on code quality
and reliability in complex systems?

Research Questions

Mixed Methods Semi-Structured Interview

Mining Software Repository
Qualitative Analyses{

What are the differences in terms of reusability
between traditional systems and complex systems?

What is the impact of software reuse on code quality
and reliability in complex systems?

Research Questions

Mixed Methods Semi-Structured Interview

Mining Software Repository

Survey

Qualitative Analyses{
What are the differences in terms of reusability

between traditional systems and complex systems?
What is the impact of software reuse on code quality

and reliability in complex systems?

RQ1- On the difference between Traditional and Complex Systems

1. An empirical analysis of the use of reusability mechanisms in traditional vs
complex systems 
 

2. Survey with developers to understand how they adopt reusability
mechanisms in traditional vs complex systems

RQ2 - On the impact on code quality and reliability in Complex Systems

1. On the impact of program abstraction, third-party libraries, and design
patterns in complex systems on code smells, defect proneness, and
maintenance effort  
 

2. An industrial case study with the support of Business Solution S.L.R. on
the impact of reuse in complex systems

Final Outcome

The outcome of this Ph.D.
pro ject is to prov ide a
recommended system that
practit ioners can use to
identify which reusability
mechanism have to adopt to
increment code quality and
reliability in complex systems

Methodology & Preliminary Results

RQ1 - On the difference between Traditional and Complex Systems

0% 100%0% 100%

RQ1 - On the difference between Traditional and Complex Systems

Traditional
Systems

source code

GitHub

Complex
Systems

source code

0% 100%0% 100%

RQ1 - On the difference between Traditional and Complex Systems

Traditional
Systems

source code
Module -  

CK Metrics

ReuseMetrics

Dataset

Dataset

GitHub

Complex
Systems

source code

0% 100%0% 100%

RQ1 - On the difference between Traditional and Complex Systems

Traditional
Systems

source code
Module -  

CK Metrics

ReuseMetrics

Dataset

Dataset

What are the differences in
terms of reuse in traditional

and complex systems?Data Integration
GitHub

Complex
Systems

source code

0% 100%0% 100%

RQ1 - On the difference between Traditional and Complex Systems

Traditional
Systems

source code
Module -  

CK Metrics

ReuseMetrics

Dataset

Dataset

What are the differences in
terms of reuse in traditional

and complex systems?Data Integration
GitHub

Complex
Systems

source code

0% 100%0% 100%

The use of implementation and specification inheritance
followed an “increasing-decreasing”

The design erosion observed by Lehman is confirmed

Under Review-Empirical
Software Engineering (EMSE)

Delegation and Inheritance evolve over time, but not in a
statistically significant manner

Software analysis, evolution, and
Reengineering (SANER)

RQ1 - Survey with developers on the role of reusability mechanisms

To understand how complex systems developers use software reusability,
we will conduct several surveys using Prolific and Reddit.

Example of Questions

To build complex systems, what kind of reusability mechanisms do you
use?
Can you describe the mechanisms for software reusability that are most
difficult to implement?

0% 100%0% 100%

RQ1 - Survey with developers on the role of reusability mechanisms

To understand how complex systems developers use software reusability,
we will conduct several surveys using Prolific and Reddit.

Example of Questions

To build complex systems, what kind of reusability mechanisms do you
use?
Can you describe the mechanisms for software reusability that are most
difficult to implement?

0% 100%0% 100%

Design Phase

RQ1 - On the difference between Traditional and Complex Systems

At the end of the survey, we will use the information provided by
developers to replicate studies on the evolution of reusability (focused on
program abstraction, third-party libraries, and design patterns) in
complex systems (AI-enabled and IoT systems)

0% 100%0% 100%

RQ2 - On the impact on code quality and reliability in Complex Systems

0% 100%

Source Code
Version Control

RQ2 - On the impact on code quality and reliability in Complex Systems

0% 100%

DatasetDependent
Variables
Extractor

Source Code

Module -  
CK Metrics

Module -
ReuseMetrics

Dataset

Dataset
Version Control

RQ2 - On the impact on code quality and reliability in Complex Systems

0% 100%

DatasetDependent
Variables
Extractor

Source Code

Module -  
CK Metrics

Module -
ReuseMetrics

Dataset

Dataset Research
Question(s)

Building a Statistical 
ModelData Integration

Version Control

RQ2 - On the impact on code quality and reliability in Complex Systems

0% 100%

Delegation and inheritance positively correlate to the decrease
of the code smell severity

Software analysis, evolution, and
Reengineering (SANER)

Delegation and Inheritance do not influence the defect proneness
of source code

The reusability metrics positively influence the decrease of
maintenance effort

Under Review-Empirical
Software Engineering (EMSE)

Different tools can detect different security-related concerns with
different frequencies

There are security-related concerns never detected (e.g.,
Improper Access Control)

Euromicro

Research Gaps

There is a lack of empirical knowledge on how
reusability mechanisms vary in complex systems

Most studies on the impact of reusability on code quality
and reliability focused only on traditional systems

Research Gaps

There is a lack of empirical knowledge on how reusability
mechanisms vary in complex systems

Most studies on the impact of reusability on code quality and
reliability focused only on traditional systems

Euromicro

EMSE SANER

EMSE SANER

Other works
On the Use of Artificial Intelligence to
Deal with Privacy in IoT Systems: A
Systematic Literature Review
Journal of Systems and Software
(JSS) 
supported with Business Solution S.L.R.

Open works
Survey with developers on the
role of reusability mechanisms

On the Evolution of Inheritance
and Delegation Mechanisms and
Their Impact on Code Quality  
Saner

Closed works

A Preliminary Conceptualization
and Analysis on Automated Static
Analysis Tools for Vulnerability
Detection in Android Apps  
Euromicro

On the Adoption and Effects of
Source Code Reuse on Defect
Proneness and Maintenance
Effort 
Submitted at EMSE

Next Steps
Survey with developers on the
role of reusability mechanisms

An empirical evaluation of
reusability mechanisms in

complex systems

On the role of reusability
mechanisms and their impact on

code quality and reliability

February

April

May

Backup slides

Third-Party Libraries

from qiskit_machine_learning.algorithms import QSVC

sqvc = QSVC(quantum_kernel = adhoc_kernel)
qsvc.fot(train_features, train_labels)
qsvc_score = qsvc.score(test_features, test_labels)

RQ2 - How static analysis tools can be used to detect reliability issues in mobile apps?

The preliminary results indicated that in most cases different tools can
detect different vulnerabilities with different frequencies.

Androbugs
Trueeseeing

Insider

Number of failures
0 425 850 1275 1700

Design Pattern

Client

Facade

+subSystemClassA(): string 
+subSystemClassB(string): string 
+subSystemClassC(int): int

SubSystemA

+method():string

SubSystemB

+method(string):string

SubSystemC

+method(int):int

System Wrapping

Module1

Module2

ChatGPT

RQ1 - How

RQ: What are the
capabilities of existing

automated static analysis
tools in terms of mobile
app analyzability, and

frequency of detection?

RQ2 - An empirical analysis of the impact of vulnerabilities in mobile apps

+6,500
Apps

AndroBugs

Trueseeing

Insider

0% 100%

RQ2 - On the impact of reusability mechanisms in traditional systems

Code Quality Reliability

Defect-Proneness Maintenance EffortCode Smells

RQ1- On the use of third-party libraries to implement artificial intelligence algorithms

To address the RQ2 from a defect proneness and maintenance effort
standpoint, we selected over 9,000 commits of 12 Java projects provided
by Defects4J and extracted information on commits using PyDriller

RQ2 - On the impact of reusability mechanisms in traditional systems

#Bugs

Code Churns

Dependent Variables

Inheritance

Delegation

Independent Variables

CK Metrics

Control Variables

To assess our study, we used the Multinomial log-linear model, and the
generalized Linear Model

WebView
SSL Security

Sensitive Information
External Storage

StrandHogg
Implicit Intent

Command
KeyStore

Hacker
Remove Android Device Lock

0 4.000 8.000 12.000 16.000

Androbugs Trueeseeing
Detect Logging

Detect URL
Detect Possible FQDN

Detect Library
Detect Format String

Cyptographic Constants
Detect Path Component

Open Permission
Detect Possible IPV4 Address

Manipulable Broadcast Reveiver

0 150.000 300.000 450.000 600.000

Exposed to sensitive information

Clear text of sensitive information

0 1.000 2.000 3.000 4.000

Insider

RQ2 - How static analysis tools can be used to detect reliability issues in mobile apps?

Different tools can detect different security-related concerns with
different frequencies

There are security-related concerns never detected (e.g.,
Improper Access Control)

A deeper analysis of the actual support provided by these tools
could be necessary

RQ2 - On the role of Static Analyses Tools to detect Vulnerabilities in Android Applications

The preliminary results indicated that in most cases different tools can
detect different vulnerabilities with different frequencies.

Androbugs
Trueeseeing

Insider

Number of failures
0 425 850 1275 1700

RQ2 - On the role of Static Analyses Tools to detect Vulnerabilities in Android Applications

The preliminary results indicated that in most cases different tools can
detect different vulnerabilities with different frequencies.

Androbugs
Trueeseeing

Insider

Number of failures
0 425 850 1275 1700

Androbugs and Insider fail in 25% of the cases. 
Trueeseeing in 20%of the cases

RQ2 - On the role of Static Analyses Tools to detect Vulnerabilities in Android Applications

WebView
SSL Security

Sensitive Information
External Storage

StrandHogg
Implicit Intent

Command
KeyStore

Hacker
Remove Android Device Lock

0 4.000 8.000 12.000 16.000

Androbugs Trueeseeing
Detect Logging

Detect URL
Detect Possible FQDN

Detect Library
Detect Format String

Cyptographic Constants
Detect Path Component

Open Permission
Detect Possible IPV4 Address

Manipulable Broadcast Reveiver

0 150.000 300.000 450.000 600.000

Exposed to sensitive information

Clear text of sensitive information

0 1.000 2.000 3.000 4.000

Insider

RQ2 - On the impact of reusability mechanisms in traditional systems

RQ2 - On the impact of reusability mechanisms in traditional systems

Delegation and inheritance positively correlate to the
decrease of the code smell severity

RQ2 - On the impact of reusability mechanisms in traditional systems

Delegation and Inheritance do not influence the defect proneness
of source code

The reusability metrics positively influence the decrease of
maintenance effort

Conclusion
The main objective of this Ph.D. project is to understand how reusability
mechanisms evolve over time in complex systems and their impact on
code quality and reliability

To archive these results, we developed a tool to extract reusability
metrics in Traditional Systems performed two preliminary analyses to
understand how reusability impacts code smells, defect proneness, and
maintenance effort, and analyzed the impact on vulnerability in complex
systems

To assess this study, we identified two research questions
How software reusability evolves over time?
How can reusability mechanisms be used to predict code quality and
reliability in complex systems?

List of Publications
• “On the Adoption and Effects of Source Code Reuse on Defect Proneness and Maintenance Effort”, 

G. Giordano, G. Festa, G. Catolino, F. Palomba, F. Ferrucci, and C. Gravino, 

(Submitted at Empirical Software Engineering - EMSE)

• “On the use of artificial intelligence to deal with privacy in IoT systems: A systematic literature review”, 

G. Giordano, F. Palomba, and F. Ferrucci, 

Journal of Systems and Software (JSS)

Journal

International Conferences
• “On the adoption and effects of source code reuse on defect proneness and maintenance effort,” (Registered Report) 

G. Giordano, G. Festa, G. Catolino, F. Palomba, F. Ferrucci, and C. Gravino, 2022. 

IEEE International Conference on Software Maintenance and Evolution (ICSME). Limassol, Cyprus.

• “A preliminary conceptualization and analysis on automated static analysis tools for vulnerability detection in android apps.”  

G. Giordano, F. Palomba, and F. Ferrucci, 

Euromicro Conference on Software Engineering and Advanced Applications (SEAA). Maspalomas, Gran Canaria, Spain.

• “On the evolution of inheritance and delegation mechanisms and their impact on code quality”, 

 G. Giordano, A. Fasulo, G. Catolino, F. Palomba, F. Ferrucci, and C. Gravino, 

IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2022,

Learning and Teaching Activities
Learning Activities

Teaching Activities
I served as a teaching fellow for the courses: Computer Science Education,
Fundamentals of Artificial Intelligence, Software Dependability, Software
Engineering, Software Engineering for A.I., Software Metrics and Quality,
Software Project Management

• Winter School on Software Engineering. Virtual

• 5th International Summer School on Software Engineering (ISSSE). Virtual.

• 20th Belgium-Netherlands Software Evolution Workshop - BENEVOL 2021.

• Introduction to Machine Learning Course held by Prof. Dario Di Nucci and Prof.

Gemma Catolino - Jheronimus Academy of Data Science (JADS), Netherlands -
2021

• Virtual - Facebook Testing and Verification Symposium - Facebook TAV 2020.

External Collaborations

I collaborated with the Jheronimus Academy of Data Science (JADS)
Netherlands for 9 months (starting on 3 April). 
During this period, I worked on software reuse in traditional systems. 
We published a registered report paper on software reusability and its impact
on code quality metrics. This work was published at ICSME. 
In addition, we have extended the paper and submitted it to EMSE Journal.

Abroad Period

Industrial Period
I collaborated with an Italian Company (Business Solution S.L.R.) for three
months (starting on 27 July). During this period, I worked on vulnerabilities in
mobile applications.  
We published a full paper at Euromicro Conference (SEAA).

Professional Activities
I served as Program Committee Member or publicity chair at several
International Conferences and workshops.
• 20th International Conference on Mining Software Repositories 

(MSR 2022) Program Committee Member, Melbourne, Australia

• 7th International Conference on Software Engineering Advances (ICSEA

2022) Program Committee Member, Lisbon, Portugal

• 1st Workshop on Software Quality Assurance for Artificial Intelligence 

Web and Publicity Chair SQA4AI 2022, Virtual

• 6th International Conference on Software Engineering Advances (ICSEA

2021) Program Committee Member, Barcelona, Spain

I reviewed more than 20 papers for International Conferences and Journals.

RQ12 - On the role of Static Analyses Tools to detect Vulnerabilities in Android Applications

RQ1 - On the privacy tasks tackled with the use of artificial intelligence technique

To respond of the RQ1, we manually
classified each paper
Most papers use artificial intelligence
algorithms to analyze network traffic, or to
detect possible malware or attacks

RQ2 - On the IoT domains where artificial intelligence techniques have been applied

In 62% of the cases, the authors do
not specify the domain where
artificial intelligence techniques
have been applied.

This outcome suggests that artificial
intelligence algorithms could be
considered “context-independent”.

RQ3 - On the families of artificial intelligence algorithms used to deal with privacy

Most of the proposed approaches to deal with privacy in IoT systems
use supervised learning techniques. In particular, according to the
literature, Random Forest is the most applied.

However, we identified a lack of analyses on other type of artificial
intelligence approaches, especially regards deep learning approaches

RQ4 - On the dataset employed by artificial intelligence algorithms

In almost half of the nearly, papers
use MNIST dataset to train artificial
intelligence algorithms

RQ4 - On the dataset employed by artificial intelligence algorithms

Instead of moving on to harder datasets
than MNIST, the ML community is
studying it more than ever.
Even proportional to other datasets

Ian Goodfellow Most researchers indicated that the
use of MNIST is too easy to train
artificial intelligence algorithms, and
for this, the results obtained could
be affected by biases

RQ5 - On the validation strategies employed to assess the artificial intelligence

In 56% of the cases, the strategy
appl ied to val idate art ificial
intelligence algorithms is the K-
Fold Cross Validation; however, in
several cases, the use of this
strategy is unsuitable

RQ6 - On the evaluation metrics employed to assess the artificial intelligence

Most of the proposed studies used to
evaluate artificial intelligence algorithms’
accuracy metric. 
However, the characteristics of the
datasets might make them biased
toward accuracy, implying a biased
interpretation of the real capabilities of
the proposed techniques

Sum Up

Scan Me!

giagiordano@unisa.it

@GiammariaGiord1

https://broke31.github.io/giammaria-giordano/

Researchers propose artificial intelligence algorithms to
deal with privacy, but in most cases, the artificial
intelligence pipelines have several concerns.

Fill

Research Gaps

Based on the State-of-The-Art, we identified several concerns on the use
of artificial intelligence to deal with privacy in IoT systems

Fill The Gap

! The state-of-the-art does not provide information on how third-party libraries used to
implement artificial intelligence algorithms can be used to predict privacy or security attributes.

! The artificial intelligence techniques used to deal with privacy in IoT Systems do not follow the
SE4AI principles, and for this, the results could be affected by biases.

The frameworks and the best practices proposed in the literature to deal with privacy are
never applied, which suggests that these frameworks could not be applied in IoT contexts.!

State-of-The-Art

What is the impact of third-party libraries on
non-functionality requirements in IoT

systems?

Are the existing artificial intelligence
techniques able to detect security and privacy

issues during the information exchange?

Are the proposed frameworks usable to deal
with privacy in IoT systems?

State-of-The-Art

Are the existing artificial intelligence
techniques able to detect security and privacy

issues during the information exchange?

Are the proposed frameworks usable to deal
with privacy in IoT systems?

What is the impact of software reusability on
non-functionality requirements in IoT

systems?

RQ1- On the use of third-party libraries to implement artificial intelligence algorithms

To better address the RQ1, we conducted two preliminary steps. 
We analyzed the impact of the principal mechanisms of reuse for
traditional systems on code quality and reliability during the software
evolution

What is the impact of software reusability on non-
functionality requirements in traditional systems?

Take into account that in most cases, vulnerabilities in mobile applications
depend on the use of unsafe third-party libraries; we conducted a
preliminary investigation on the capabilities of Static Analysis Tools to
detect vulnerabilities in mobile apps.

How do third-party libraries impact the security
and privacy in mobile applications?

What is the impact of software reusability on
non-functionality requirements in IoT

systems?

State-of-The-Art

Are the proposed frameworks usable to deal
with privacy in IoT systems?

Are the existing artificial intelligence
techniques able to detect security and privacy

issues during the information exchange?

Are the existing artificial intelligence
techniques able to detect security and privacy

issues during the information exchange?

What is the impact of software reusability on
non-functionality requirements in IoT

systems?

State-of-The-Art

Are the proposed frameworks usable to deal
with privacy in IoT systems?

Methodology

RQ11- On the use of reusability mechanisms in traditional systems

To address the RQ11 we conducted two empirical investigations. 

Code Quality Reliability

Defect-Proneness Maintenance EffortCode Smells

RQ1- On the use of third-party libraries to implement artificial intelligence algorithms

From the code smells perspective, we selected multiple versions of three
Java Projects: ANT, JHotDraw, and JEdit

Spaghetti Code

Data Should be Private

God Class

Complex Class

Dependent Variables

Inheritance

Delegation

Independent Variables

CK Metrics

Control Variables

To extract information on Code smells, we used Decor Tool, while for the
Independent Variables and the Control Variables, we built a tool
“ResueMetrics”

RQ11- On the use of reusability mechanisms in traditional systems

RQ1- On the use of third-party libraries to implement artificial intelligence algorithms

We labeled as “increase”, “decrease”, or “stable” the difference of
reusability between versions I and I+1 and applied the Multinomial Log-
Linear Model

RQ11- On the use of reusability mechanisms in traditional systems

RQ1- On the use of third-party libraries to implement artificial intelligence algorithms

To address the RQ11 from a reliability standpoint, we selected over 9,000
commits of 12 Java projects provided by Defects4J and extracted
information on commits using PyDriller

RQ11- On the use of reusability mechanisms in traditional systems

#Bugs

Code Churns

Dependent Variables

Inheritance

Delegation

Independent Variables

CK Metrics

Control Variables

