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A B S T R A C T

Nowadays, the adoption of software systems worldwide is there for all.

Daily, end-users use software systems to perform a number of operations

ranging from simple operations e. g., setting up a timer, to complex op-

erations e. g., monitoring an environment using complex artificial intelli-

gence (AI) systems. Despite the plethora of software systems worldwide,

one of the key points that unite them is that they need to evolve to avoid

premature obsolescence. However, frequent change requests during main-

tenance and evolution activities can compromise software quality due

to sub-optimal design decisions or the pressure to meet tight deadlines,

often leading to design erosion. As a result, much of the existing literature

on code quality in software systems focuses primarily on aspects such

as defect proneness, code smells, and maintenance effort. Nevertheless,

key questions about how code quality evolves over time and the impact

of software engineering practices—such as the adoption of reusability

mechanisms or the utilization of built-in features of programming lan-

guages—during software maintenance and evolution remain unaddressed.

This thesis aims to bridge this gap by investigating how code quality

evolves over time and examining the influence of software engineering

practices on maintenance and evolutionary activities.

The ultimate goal of this thesis is to provide a step forward on the so-

called Evolutionary Code Quality i. e., the quality attributes that developers

need to monitor during software maintenance and evolution.

To address our objective, we performed mining software repository

(MSR) studies on software systems, taking into account two aspects: I)

the temporal variation of code quality and II) the relationship between

reusability mechanisms and built-in features and code quality.

Our findings revealed that: I) reusability mechanisms exhibit temporal

variability without following a discernible pattern; II) these mechanisms

can often mitigate code quality concerns, particularly for code smells; III)
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the peculiarity of built-in functions in software systems can stimulate the

proliferation of specific code smells.

In addition, as the last part of this dissertation, we provide two fur-

ther studies related to code quality by considering systems developed

using emerging technologies (i. e., IoT systems and mobile apps) to give an

overview of the main aspects that these systems need to consider related

to code quality i. e., security and privacy aspects.
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1
I N T R O D U C T I O N

1.1 C O N T E X T A N D M O T I VAT I O N

Nowadays, the perception of software systems’ capabilities is rapidly

changing. The introduction of new technologies to the market has shocked

the world by drawing end-users attention to these capabilities. Applica-

tions such as CHATGPT1, GOOGLE GEMINI2, or META LLAMA3 are just

an example of the abilities of software systems to perform special and

general-purpose tasks.

Despite the differences among software systems (such as the environ-

ments where they operate or the features they offer), one common factor

that characterizes them is the need to evolve and be maintained over time

to avoid premature obsolescence [192]. We go back to the time between

the 1960s and the 1970s, an IBM engineer i. e., Lehman, noted that the

task of successfully evolving software systems was more complex than it

appeared, and based on his experience, he formulated the eight empirical

rules that are now known as “Lehman’s Laws of Software Evolution” [121].

It is important to note that the laws proposed by Lehman were reworked

until the 1990s.

L1: Continuing Change. If the software is not continuously adapted

to new needs, it will gradually become less satisfactory to its users,

decreasing its effectiveness and use.

L2: Increasing Complexity. A software system tends to increase in com-

plexity over time unless deliberate efforts are made to reduce its

complexity through specific activities.

1https://chat.openai.com/
2https://gemini.google.com/?hl=it
3https://llama.meta.com/
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L3: Self-Regulation. Software evolution functions as a self-regulating

process, yielding a nearly normal distribution of both product and

process artefacts.

L4: Conservation of Organizational Stability. The average overall ac-

tivity rate of an evolving software system remains consistent over

time; i. e., the amount of work completed in each release remains

relatively constant.

L5: Conservation of Familiarity. The portion of new content in the next

releases tends to be constant or to decrease over time.

L6: Continuing Growth. The number of functionalities in software sys-

tems tends to increase over time.

L7: Declining Quality. The user perception of system quality declines

over time unless its design is not thoroughly maintained and

adapted to the new operational constraints.

L8: Feedback System. To effectively evolve a software system, it is crucial

to acknowledge that the development process operates as a feedback

system with multiple loops, agents, and levels.

Taking a closer look at Lehman’s laws, especially focusing on the L2

(Increasing Complexity) and L7 (Declining Quality), it is possible to observe

that both the rules implicitly suggest that the continuous change requests

that software systems receive daily can gradually degrade software quality

attributes, leading to more complex software maintenance and evolution.

For this reason, due to the characteristics of software systems that are

“by design” change prone [116], the literature predominantly focuses on

quality aspects related to defect proneness [176, 253], code smells [85, 348],

maintenance effort [318].

To facilitate the evolution and maintenance activities, the software engi-

neering community proposes a number of mechanisms that practition-

ers can utilize. Among them, two well-established and adopted daily by

practitioners are the reusability mechanisms and the use of built-in func-

tions. The former are commonly used in object-oriented programming
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languages and refer principally to the use of design patterns [75], program-

ming abstractions [166] (e. g., inheritance and delegation), or third-party

libraries [370]. While the latter commonly refers to a toolkit of features

provided by programming languages. Such built-in features, most of the

time, play a decisive role in practitioners’ selection of a specific program-

ming language. Among the various programming languages that provide a

number of built-in functions, one of the most appreciated by developers

is PYTHON that “by design” offers complex built-in functions that can be

used during the daily activities of maintenance and evolution [350].

Although the Software engineering (SE) community has spent effort

analyzing code quality by considering practices that facilitate software

evolution and maintenance, little has been done to look at code quality

variation over time. However, this aspect is paramount for practitioners

who perform maintenance and evolutionary tasks daily, and they are inter-

ested in comprehending how these practices affect code quality attributes.

These uncertainties make releasing automatic quality assurance tools

and continuous code quality assurance tools tricky for the software engi-

neering community, which, due to these limitations, is not able to identify

what are the possible factors that developers need to monitor to facilitate

the introduction of new features within software system or to avoid the

system collapse due to the unrestrained growth of specific code attribute

(e. g., Lines of Code (LOC) or coupling) during the system maintenance.

This thesis addresses a significant gap by exploring code quality from an

evolutionary perspective. Its ultimate goal is to advance our understand-

ing of Evolutionary Code Quality (ECQ), namely, the quality attributes

that practitioners must monitor to facilitate software maintenance and

evolution effectively.

1.2 R E S E A R C H S TAT E M E N T

Over the last decades, the software engineering community has investi-

gated the topic discussed in this thesis with considerable attention. Despite
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the high-quality contributions in the code quality field, unexplored aspects

are still worthy of investigation.

We resume the main limitations and the critical aspects identified.

R E U S E A N D C O D E Q U A L I T Y I N S O F T W A R E S Y S T E M S . Several investi-

gations have been done to comprehend the relationship between

reusability mechanisms and code quality. The main aspect that leads

researchers to investigate this relationship can be found in the nature of

software systems, generally built using object-oriented paradigms e. g.,

Java [59, 229, 272], that offers, by design, mechanisms that encourage

developers to reuse source code [146]. The main investigations that have

been done are related to the relationship between inheritance (i. e., the

mechanism that permits the inherit attributes and methods from a super-

class A to a subclass B), and delegation (i. e., the mechanism that permits

a class A to use a method of a class B by declaring an instance of B, that

will be in charge of actually acting), and their impact on code quality.

Considering previous studies, we identified several critical research gaps

(RGaps):

RGap1: . Previous studies do not focus on evolutionary aspects;

RGap2: . Previous studies primarily focus on inheritance and delegation

without considering other reusability mechanisms;

RGap3: . Previous studies focus on Java systems without considering

how code quality varies in other programming languages.

These aspects are paramount for three reasons: I) the decrease of code

quality attributes typically affects maintenance and evolutionary activities

[351], and for this reason, it is necessary to consider this aspect to under-

stand possible implications and to estimate their impact on the software

system, II) the software engineering community proposes several further

reusability mechanisms e. g., design patterns, that need to be explored to

comprehend their relationship with code quality attributes over time, III)

other programming languages are nowadays considered by practitioners

to build evolving systems e. g., Python, and its diffusion into the market

need to be explored.
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The ultimate goal of this dissertation is to perform a step forward on

the so-called “Evolutionary Code Quality” i. e., analyze the main quality

attributes that practitioners should monitor while evolving or maintaining

software systems. The purpose is to offer a conceptual framework that

software engineers can consult to comprehend how code quality is de-

clining and what metrics need to be monitored during the maintenance

and evolution of these systems. The perspective is for both practitioners

and researchers. The former are interested in comprehending the best

practices to adopt during the system maintenance and evolution. The

latter are interested in investigating the main factors in software systems

with high code quality in multiple contexts. Based on the research gaps

above, we identified the main research objective of this thesis:

Objective

Comprehend how code quality varies in software systems and how

code metrics affect it.

This thesis recognizes the identified research gaps and the objective and

addresses them by defining a high-level research goal (RG):

Û RG. Understanding How Reusability Mechanisms and Built-in Fea-

tures Affect Code Quality Over Time

The empirical experiments conducted in this thesis adhere to the best

practices established in Empirical Software Engineering research. Specifi-

cally, the thesis utilizes the Goal-Question-Metric paradigm [53] to identify

and evaluate products, processes, and resources.

For each study, the forthcoming sections will detail the objectives, re-

search questions, and the instruments utilized to conduct the analysis.

To ensure rigour in our investigations, we adhered to the ACM/SIGSOFT

Empirical Standards [290].

Most of the presented studies involve large-scale mining of software

repositories (MSR) by using state-of-the-art tools (e. g., PYDRILLER) to ex-

tract information on the project’s history (e. g., number of commits, source
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code metrics, and so on). The sampling of projects and the data collection

are performed mainly by analyzing GITHUB projects with custom scripts

(e. g., PYTHON or BASH scripts) or building ad-hoc tools able to extract

specific project characteristics (e. g., number of use of inheritance or del-

egation mechanism) or already released tools (e. g., the design pattern

detector released by Tsantalis et al. [346]).

Figure 1.1 provides a generic overview of the research process applied to

perform our investigations.

GitHub Mining

Tool

Tool

Tool

Dataset

Data 
Integration

Research 
Question

Data Analysis

Dataset

Dataset

Research 
Question

Research 
Question

Data Analysis

Data Analysis

Figure 1.1: Research Method Overview

Starting from the left side of the figure, in all studies, we identified the

most appropriate source code platform (e. g., GITHUB or SOURCEFORGE).

Then we cloned repositories and extracted data using multiple tools (e. g.,

PYDRILLER, or DECOR), then we aggregated data according to the research

question that we wanted to answer. Any collected data useful for the ex-

periments was analyzed by using statistical methods. Specifically, we used

statistical description to assess basic information about the phenomena

under analysis; then, we selected the most appropriate statistical test to

analyze correlation aspects between variables according to the specific

problem. For instance, we used the regression model to assess the correla-

tion between the adoption of inheritance and delegation with code smells.
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Table 1.1: The research studies discussed in this thesis and how they contributed
to addressing the problems here faced.

ID Study Name Contribution RG Ref.

C01 On the Evolution of Inheritance and
Delegation Mechanisms and Their
Impact on Code Quality

An empirical analysis of how Inheritance
and Delegation evolve over time and
their impact on Code Smells

Main Chapter 3

J03 On the Adoption and Effects of
Source Code Reuse on Defect Prone-
ness and Maintenance Effort

An empirical analysis on the evolution
of Inheritance and Delegation over time
and their impact on Defect Proneness
and Maintenance effort

Main Chapter 4

C04 The Yin and Yang of Software Quality:
On the Relationship between Design
Patterns and Code Smells

A large-scale empirical analysis on how
design patterns are related on the emer-
gence of code smells

Main Chapter 5

C05 Understanding Developer Practices
and Code Smells Diffusion in AI-
Enabled Software

A large-scale empirical analysis on the
diffusion of code smells over time in AI-
enabled Systems and the activities that
lead developers to introduce code smells
in their systems

Main Chapter 6

J01 On the Use of Artificial Intelligence
to Deal with Privacy in IoT Systems:
A Systematic Literature Review

A Systematic Literature Review on the
use of artificial intelligence to deal with
privacy in IoT environments

Further Chapter 8

C02 A Conceptualization and Analysis on
Automated Static Analysis Tools for
Vulnerability Detection in Android
Apps

A large-scale empirical analysis on the
capabilities of static analysis tools to de-
tect vulnerabilities in mobile applica-
tions

Further Chapter 9

All the results were presented by selecting the most appropriate way (e. g.,

tables or bar plots) and discussed in separate subsections to increase their

understandability and readability.

1.3 R E S E A R C H C O N T R I B U T I O N S

This thesis is structured into four main parts. The first part provides the

necessary background information, setting the foundation for understand-

ing the subsequent sections. The second part presents studies on evolving

systems, focusing on well-known code quality issues such as code smells,

defect proneness, and maintenance effort. In the third part, we delve into

further studies on code quality, specifically examining emerging technolo-

gies (e. g., IoT devices and mobile applications) and addressing principal

quality issues that could adversely affect these systems, namely security

and privacy. The fourth part concludes with discussions, further analysis,
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additional considerations, and conclusions, encapsulating the insights

gathered throughout this thesis.

Table 1.1 offers an overview of the papers discussed in this thesis, high-

lighting their respective contributions. The table provides a unique iden-

tifier (“C” for studies published in international conferences, and “J” for

those published in international journals), the name of the study, the sci-

entific contribution (i. e., , the results achieved), the research goal (“Main”

if the study addresses the primary research goal identified earlier, and “Fur-

ther” if it pertains to additional studies), and the specific chapter where

the paper is discussed.

1.3.1 Research Contribution on in Evolving Systems

We addressed the RG by performing four empirical studies.

First, we investigated the relationship between inheritance and dele-

gation and their impact on code smells. We selected three Java systems

and analyzed them from an evolutionary standpoint. This contribution

is presented in publication C01. Secondly, we analyzed how inheritance

and delegation are related to defect proneness and maintenance effort.

We considered 12 Java projects and over 44k commits. The contribution of

this study is presented in the publication J03.

In addition, we performed an empirical investigation to understand how

design patterns are related to code smells over time. The results of this

study are presented in C04.

Finally, we analyzed the prevalence and activities that induce developers

to introduce code smells in systems that extensively use built-in features.

In particular, since Python is one of the programming languages that

makes the most use of built-in features and simulates itself very well to

building AI-enabled systems, we analyzed 200 AI-enabled systems and

over 10k releases for our study. We presented the contribution in C05.
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1.3.2 Furhter Contribution on Code Quality

We conducted a Systematic Literature Review (SLR) to comprehend how

artificial intelligence handles privacy in Internet of Things (IoT) systems

and if the proposed AI techniques can be used in practice to discover

or mitigate possible privacy issues. Specifically, we identified 2,202 pri-

mary studies by questioning aspects related to the techniques used to

identify privacy concerns in IoT systems, the datasets used, the domains

where these techniques are adopted, and the tasks performed. The full

contribution is presented in J01. From the empirical side, we conducted

a large-scale empirical analysis of over 6,500 mobile apps using three

vulnerability detector tools. The results of the study are presented in C02.

We decided to perform these two additional studies by considering code

quality attributes related to security and privacy aspects due to the intrinsic

characteristics of those two family systems, which in a non-negligible

number of cases generate a plethora of data that needs to be exchanged

and storage using secure protocols to avoid possible data leakage that

could negatively impact the perception of user about the quality of the

system [139]. Specifically, the literature on the IoT domains indicates that

artificial intelligence techniques lend themselves well to preserving or

detecting possible privacy concerns [28]. Due to these considerations, we

conducted an SLR to assess previous results and to comprehend the state-

of-the-art. In addition, due to the diffusion on ANDROID OS worldwide

and the relatively low cost of these devices, we decided to include an

investigation to comprehend if the current static-analysis tools can be

used in practice to discover vulnerabilities.

1.3.3 Publicly Available Tools and Replication Packages

All the raw data, tools, datasets, and scripts are publicly available for

each study by including a replication package. Specifically, the online

appendixes are available at [119, 411, 412] for Chapters 3 to 6, and [117,

259, 371] from Chapters 8 to 9.





2
B A C K G R O U N D A N D R E L A T E D W O R K

This Chapter provides the necessary background information helpful to

understand the next chapters and summarizes the state-of-the-art giving

an overview of closely connecting studies on reusability mechanisms and

code quality in software systems.

2.1 K E Y C O N C E P T S A N D D E F I N I T I O N S

The following section provides the principal definitions and elements

useful to target our empirical investigation.

2.1.1 Reuse through Inheritance and Delegation

In JAVA, a hierarchical dependency between two classes is established by

means of two main constructs:

“extends” . Through the use of the keyword “extends”, a class A inher-

its state and behavior from a class B, establishing a subclass-superclass

relation. The attributes defined and the methods implemented in B be-

come available when calling objects of the class A.

“implements” . The adoption of this keyword allows a class A to inherit

the methods defined within an interface B: in particular, a Java inter-

face only specifies the blueprint of a class, i. e., the methods that all the

classes inheriting from it must provide, without providing a concrete

implementation—at least in the older versions. In turn, the inheriting

classes must override the acquired methods to specify their behaviour.

These constructs enable the definition of reusability in terms of spec-

ification inheritance, implementation inheritance, and delegation [49].

13
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The former represents the possibility to replace one object with another,

combining two principles:

• The Liskov substitution principle, according to which if an object

of type A can be replaced anywhere one expects a type B object, then

A is a subtype of B [206];

• Strict inheritance refers to a subclass A that inherits, without any

modifications, all the behaviors and properties defined in its parent

classes [49]. This form of inheritance ensures that the subclass is a

complete superset of the parent class, maintaining all functionalities

and characteristics as originally defined.

Implementation inheritance involves a subclass reusing code from a par-

ent class, as noted by [49]. By default, the subclass inherits all operations

from the superclass but retains the ability to override some or all of these

operations, substituting the superclass’s implementation with its own. This

mechanism not only facilitates code reuse but also promotes modularity

and the ability to extend existing functionalities. The implementation in-

heritance, however, violates the encapsulation principle [49]: indeed, it

does not prevent other client classes to have a direct access to the meth-

ods of the superclass, possibly causing clients to invoke those methods

improperly. An encapsulation-preserving alternative to implementation

inheritance is called delegation. This is the mechanism through which a

class can delegate an operation to another class without establishing any

inheritance relation.

To summarize, specification inheritance, implementation inheritance,

and delegation enable the reuse of portions of code in different manners.

On the one hand, the reuse expressed in terms of implementation inheri-

tance and delegation exploits the concept of superclasses. On the other

hand, specification inheritance is about interfaces.
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2.1.2 An overview of Code Smells

At the end of the 1990s, Beck and Fowler [104] presented an informal

catalog of 22 symptoms of possible design issues, looking at the best and

worst software developing practices, coining the term “code smells”. They

discovered that the presence of code smells negatively affects software

maintenance and evolution. These smells range from little portions of

code e. g., “Duplication Code” or “Long Method” to entire classes e. g., “God

Class”. Their presence can decrease code quality attributes from multiple

viewpoints e. g., increasing the defect proneness [398], or decreasing the

code comprehension [147].

Several studies have been conducted to analyze code smells with differ-

ent objectives. Tufano et al. [347] investigated when and why developers

introduce code smells in software systems and discovered that, in most

cases, code smells are removed due to the removal of the files. In other

cases, researchers proposed tools useful to discover code smells that range

from static analysis tools, e. g., ADoctor [267], Decor [244], JSpIRIT [356],

to more elaborate detectors, e. g., iPlasma [225] or PMD [21] that use AI

techniques to discover smells. In many cases, the effectiveness of these

tools to detect smells appears to be contingent on the chosen technique.

Nevertheless, the body of SE knowledge indicates that AI-based solutions

may not be entirely well-suited for the task. Indeed, the existing data

balancing techniques seem to be inadequate for code smell tasks [275].

Consequently, also applying the state-of-the-art technique to balance code

smells datasets, the performances achieved by AI techniques are inaccu-

rate in terms of Accuracy, F1-score, and AUC-ROC [275].

The main characteristic that unites most previous work is that these

studies focus on Java code [268, 323, 347]. If, on the one hand, Java is

considered one of the most adopted programming languages to build

software systems, on the other hand, researchers noticed a paradigm shift

[125] by practitioners that tend to select flexible programming languages

able to combine multiple paradigms (e. g., Functional Programming and

Object-Oriented) and with an extensive set of API enabled the use of AI al-
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gorithms during the development of complex systems (e. g., Python) [372].

This paradigm shift enables the possibility of proliferation of specific code

smells “programming languages dependent”, i. e., code smells that emerge

in specific programming languages due to their unique characteristics.

2.1.3 Python-Specific Code Smells

Python developers underline substantial differences between its program-

ming language and others, not only in terms of syntax but principally in

terms of mindset—i. e., they do not limit to “translating” from other pro-

gramming languages to Python—but instead, change the development

approaches by adopting unique paradigms that better fit Python philoso-

phy [400]. These differences are so substantial that the Python community

coined the term “Pythonic way”1 to refer to the practice of writing code

snippets that enable unique constructs and features provided by Python.

Due to the considerations mentioned above, it is necessary to redefine

code smells more specifically to align with the unique characteristics of

the language in question. A prime example is Complex List Comprehension.

This particular code smell occurs in Python list comprehensions that in-

clude multiple, intricate expressions. While Python allows for expressions

and operations to be applied compactly to each element, overly elaborate

expressions can compromise readability and maintainability. This com-

plexity can lead to decreased understandability and potentially increase

the likelihood of defects.

Listing 2.1 shows an example of a Complex List Comprehension.

1 numbers_str = ["24", "15", "21", "27", "35", "40", "45", "50",

"121", "363"]

filtered_numbers = [int(num) ** 2 for num in numbers_str if

(int(num) % 3 == 0 and len(num) >= 2 and "5" not in num

and str(int(num) ** 2) == str(int(num) ** 2)[::-1])]

Listing 2.1: Example of Complex List Comprehension.

1https://medium.com/swlh/the-pythonic-way-6ad73abfbb00

https://medium.com/swlh/the-pythonic-way-6ad73abfbb00
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The code above-mentioned makes the following operations for each “num”

in “numbers_str”:

• Convert the num from string to integer;

1. Checks whether num is a multiple of 3;

2. Checks whether num has more than 2 digits;

3. Checks whether the digit 5 is not in the original string;

4. Checks whether the square of num is palindrome.

• If all the controls are successful, the square of num is added in the

list ”filtered_numbers”.

To mitigate this smell, developers should consider replacing a complex

list comprehension with a loop when possible.

Listing 2.2 shows a refactoring strategy of the previous code.

numbers_str = ["24", "15", "21", "27", "35", "40", "45", "50",

"121", "363"]

filtered_numbers = []

3 for num in numbers_str:

num_int = int(num)

if num_int % 3 == 0:

if len(num) >= 2:

if "5" not in num:

8 square = num_int ** 2

if str(square) == str(square)[::-1]:

filtered_numbers.append(square)

Listing 2.2: Example of Complex List Comprehension refactorized.

2.2 R E L AT E D W O R K

This section summarizes the existing studies on code quality. More in

detail, in section 2.2.1 will be presented a literature review on how inheri-

tance and delegation are related to code quality; while, in section 2.2.2 will
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be shown the closest studies on the relationship between design patterns

and code smells; lastly, section 2.2.3 will explain the principal differences

between previous work and this thesis.

2.2.1 Literature Review on Inheritance and Delegation on Code Quality

in Software Systems

Software reusability is a key software engineering principle, as it allows

developers to reuse pieces of code that have been previously developed

and tested [44]. The research community identified some benefits deriving

from general features provided by object-oriented programming languages

[91, 170, 171, 335]. In this thesis, we review previous literature that has

demonstrated the benefits of various reusability mechanisms, as well as

their potential drawbacks.

Prechelt et al. [281] defined two controlled experiments to verify the re-

lation between inheritance and maintenance effort, showing that keeping

the inheritance depth small reduces the overall effort spent by develop-

ers while maintaining source code. These results are in line with those

reported by Daly et al. [78], who conducted a series of controlled studies to

investigate the impact of inheritance on source code maintainability. Their

results indicated that the higher the depth of the inheritance tree of classes,

the lower the ability of developers to maintain those classes. Albalooshi

[8] corroborated these findings by showing that multiple inheritance in

JAVA may result in undesirable effects on the produced software such as

increased coupling, lack of cohesion, and increased software complexity;

the author concluded that an improper use of inheritance might lead to

major negative effects on source code reusability. Later on, Albalooshi and

Mahmood [9] evaluated the implementation of the multiple inheritance

mechanism on the reusability of three programming languages like JAVA,

PYTHON, and C++, showing that the JAVA programming features lead de-

velopers to deteriorate source code quality—as measured by means of the

Chidamber & Kemerer (CK) metrics.
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Goel and Bathia [122] analyzed whether multilevel inheritance impacts

on reusability, conducting an empirical experiment on three C++ systems

and finding a negative effect of inheritance on maintainability.

While the studies discussed so far assessed inheritance properties by

means of controlled studies, other researchers operationalized source

code maintainability in terms of quantitative measurements. For instance,

Chawla and Nath [63] assessed that the use of inheritance can have ben-

eficial effects on coupling metrics. Similar conclusions were drawn by

Chhikara et al. [67], who conducted a larger experimentation on the effects

of inheritance on multiple CK metrics. Also Vinobha et al. [357] found

inheritance to be associated to a higher reusability and maintainability.

The three papers just discussed somehow contrasted the findings achieved

by the researchers adopting controlled experiments to assess the role of

inheritance on software quality, indicating the lack of a clear result on its

usefulness. However, when considering the studies proposing quantitative

assessments, not all of them found inheritance positive. This is the case

of researchers that investigated the relation between inheritance metrics

and fault-proneness. A number of papers [2, 38, 84, 317, 390] revealed that

the high-values of inheritance metrics, which correspond to larger use

of the inheritance mechanism, lead source code to be more fault-prone

and might therefore be used as defect predictors. Similar conclusions were

drawn when considering change-proneness [56, 211, 357, 408].

A relevant research area is one of code smell detection and refactoring. In

this respect, Fowler [105] identified sub-optimal uses of reusability mech-

anisms and defined code smells like (1) Refused Bequest, i. e., subclasses

that override most of the methods inherited by the superclass, (2) Parallel

Inheritance, i. e., inheritance hierarchies that grow too much over time, and

(3) Middle Man, i. e., classes that excessively use delegation. Ligu et al. [202]

proposed a dynamic Refused Bequest detection approach, while Palomba

et al. [266] exploited mining software repository techniques for detect-

ing Parallel Inheritance instances. Still in terms of code smell research, a

number of empirical studies focused on inheritance and delegation. They
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investigated the diffusion of reusability-specific code smells [172, 265] as

well as their impact on defect prediction performance [76, 269].

2.2.2 Design Patterns and Code Quality in Software Systems

Design patterns have been introduced by the Gang of Four in 1995 [107]

and, since then, have been praised as the Holy Grail of software reusability.

They consist in ready-to-apply solutions to recurring problems in software

development, and can aid developers in the design and implementation of

source code adhering to good cohesion and coupling principles of object-

oriented programming.

Previous work has argued that design patterns may be beneficial for the

overall quality of the code. Hegedűs et al. [145] investigated the connection

between design patterns and software maintainability by performing an

empirical study on more than 300 revisions of JHOTDRAW, a well-known

JAVA framework. They estimated the level of maintainability of source code

in terms of different quality attributes, such as number of classes, lines of

code, and density of code, and found that each introduction of a design

pattern instance generated an improvement in the quality of the project.

However, related work has also discussed that design patterns are not

always beneficial for guaranteeing maintainability, especially in terms of

understandability and modifiability of the code. Vokáč et al. [358] com-

pared the maintainability of programs designed with and without design

patterns, by performing a controlled experiment with 44 professionals.

They asked participants to execute a number of maintenance tasks on

two versions of C++ programs, i.e., one implemented with design patterns

and one without. They evaluated the correctness of the executed tasks

and the time required by developers, assessing the positive or negative

impact of design patterns on software maintainability. They argued that

each design pattern has its own nature and proper place of use; they can-

not be classified as good or bad in general terms, but training sessions

can improve both the speed and quality of maintenance activities. More

recently, Khomh and Guéhéneuc [173] suggested that design patterns may
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not always have a positive impact on code quality as seen from practition-

ers’ perspective. By performing a survey study with 20 developers, they

assessed the perceived impact that design patterns have on the under-

standability of code. They found that design patterns do not always impact

quality attributes positively, as the participants considered that, although

they are useful to solve design problems, they often decrease simplicity,

learnability, and understandability of the software.

The only work investigating the connection between design patterns

and code smells was conducted by Walter and Alkhaeir in 2015 [361].

They selected two medium-size JAVA projects and considered 10 design

patterns and seven code smells related to maintainability, e. g., Feature

Envy, occurring when a method calls methods on another class more

times than on the source class, and Message Chains, consisting in a client

requesting another object, which requests yet another one, and so on,

navigating the class structure. Their findings revealed that the presence of

design pattern was positively correlated with the presence of code smell,

e. g., , the Proxy design pattern sometimes led to the introduction of a

Middle Man code smell.

2.2.3 Our Contribution on Code Quality

Our contribution in the field of code quality is complementary to the state-

of-the-art. Compared to previous work in this domain, this thesis performs

an additional step by considering quality attributes from an evolutionary

viewpoint. We addressed code quality in software systems by consider-

ing a set of empirical experiments that consider evolutionary aspects, to

comprehend how reusability mechanisms and programming language

built-in features are related to code quality. More precisely, we conducted

experiments considering the impact of reusability mechanisms (partic-

ularly focused on inheritance, delegation, and design patterns) on code

quality-related aspects (i. e., code smells, defect proneness, and main-

tenance effort) in evolving systems, and an empirical study on Python

projects on the diffusion of code smells and the motivations that lead prac-
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titioners to introduce code smells in their systems. Due to the widespread

use of Python for developing AI-enabled systems—that is, systems that

incorporate at least one AI component—we chose these systems as the

subjects for our experiments.
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3.1 I N T R O D U C T I O N

Software reusability refers to the development practice of using existing

code when implementing new functionalities [44, 326]. This is widely

considered a best practice, as it saves developers time, energy, and main-

tenance costs by relying on previously tested source code on source code

previously tested [183, 316].

Contemporary Object-Oriented (O.O.) programming languages, e. g.,

JAVA, provide developers with various mechanisms supporting code

reusability: examples are design patterns [80, 107], the use of third-party

libraries [296, 392], and programming abstractions [324]. These latter, in

particular, have caught the attention of researchers since the rise of object

orientation and were found to be a valuable element in increasing software

quality and reusability [180, 239, 297, 302, 388].

Focusing on JAVA, there are two well-known abstraction mechanisms

such as inheritance and delegation [32] (see Chapter 2). These mechanisms

are fundamental in Java programming, enabling developers to design more

flexible and maintainable software systems.

Still, from an empirical standpoint, a number of studies targeted the

role of inheritance and delegation mechanisms for monitoring software

quality. Researchers devoted effort on understanding the potential impact

of those mechanisms on software metrics [2, 63, 67], maintainability effort

and costs [9, 78, 122, 281], design patterns [19, 153], change-proneness [56,

211, 357, 408], and source code defectiveness [38, 84, 317, 390].

25
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While the current body of knowledge provides compelling evidence of

the value of reusability mechanisms for the analysis of source code quality

properties, we can still identify a noticeable research gap: as Mens and

Demeyer [237] already reported in the early 2000s, the long-term evolution

of source code quality metrics might provide a different perspective of the

nature of a software project, possibly revealing complementary or even

contrasting findings with respect to the studies that investigated code

metrics in a fixed point of software evolution. To the best of our knowledge,

Nasseri et al. [255] were the only researchers studying the evolution of

reusability metrics. They specifically focused on the size of the inheritance

hierarchies and aimed at assessing whether developers had the tendency

of adding classes at different levels of the hierarchy while evolving their

projects: the results reported that the growth of inheritance hierarchies is

limited and typically involves up to two levels.

This chapter builds on this line of research by proposing an empirical

analysis of how inheritance and delegation mechanisms evolve and their

effects on software quality evolution.

Our interest in inheritance and delegation is due to our willingness

to (1) investigate built-in abstraction mechanisms that developers are

supposed to use to increase the reusability of source code frequently and

(2) bridge the gap left by previous studies, i. e., an empirical understanding

of the evolutionary aspects of inheritance and delegation might provide

a more comprehensive understanding on the role of those mechanisms

for source code quality. Our study is conducted on JAVA: while recognizing

that other languages (e. g., PYTHON) are becoming more popular, JAVA is

still ranked in the top three of the programming languages, according to

the TIOBE index.1 In addition, the structure of the programming language

enables a more natural use of inheritance and delegation with respect to

other languages [74, 337], which allows us to understand better how these

mechanisms evolve and influence code quality. Finally, previous studies

investigated JAVA; therefore, our focus enables a comparison with them.

1Programming language ranking - Year 2021: https://www.tiobe.com/tiobe-ind
ex/.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
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More particularly, we first mine evolutionary data pertaining to 15 re-

leases of three open-source projects. Then, we statistically compare the

number of inheritance and delegation mechanisms implemented over sub-

sequent releases in order to assess the trend followed by the adoption of

those metrics. Finally, we build a statistical model relating inheritance and

delegation metrics, as well as other confounding factors, to the variation

of code smell severity in an effort to understand the impact of reusability

metrics on the likelihood of code smells becoming more/less severe over

time. The key results of our study report that the adoption of reusability

mechanisms increases over time. Yet, when controlled for size, the increase

does not appear as statistically significant. In any case, the evolution of in-

heritance and delegation is statistically connected to the decrease of code

smell severity in most cases, and we discovered negative effects only in a

few cases. To sum up, this chapter presents the following contributions:

1. Insights into the evolution of inheritance and delegation adoption

in open-source systems, which researchers might exploit to under-

stand the developer’s code quality practices further;

2. An empirical, evolutionary exploration of the impact of inheritance

and delegation mechanisms on code smell severity, which can be

of interest to researchers working in the field of code smell detec-

tion and prioritization [103, 276, 355], other than for tool vendors

interested in providing developers with better monitoring tools for

software quality evolution [159, 352].

3. A publicly available replication package [411] contains data and

scripts used to conduct our experimentation.

3.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The goal of the empirical study was to assess how inheritance and dele-

gation mechanisms evolve over time and how they impact the severity of
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Figure 3.1: Overview of the Method

code smells during software evolution, with the purpose of understanding

the extent to which reusability mechanisms applied by developers may

provide indications on the future quality of source code. The quality focus

was on the reusability in terms of specification inheritance, implemen-

tation inheritance, and delegation and their variability within software

projects. The perspective was of both researchers and practitioners: the

former are interested in gathering a deeper understanding of the role of

inheritance and delegation for source code quality, while the latter are

interested in better monitoring the code quality, looking at inheritance

and delegation metrics. Our analysis was structured around two main

research objectives.

We started by analyzing the evolution of inheritance and delegation. An

improved understanding of their evolutionary aspects would provide a

clearer overview of how developers adopt them in practice.

Û RQ2. How do developers adopt source code reusability mechanisms

during software evolution?
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We targeted this research question from different angles, each investi-

gating a different code reusability mechanism. This led to the definition of

three sub-research questions:

R Q 11 . How does implementation inheritance vary over time?

R Q 12 . How does specification inheritance vary over time?

R Q 13 . How does delegation vary over time?

Once we had assessed the evolution of those mechanisms, we then anal-

ysed how such evolution might impact source code quality, as measured

by the severity of code smells.

Hence, we asked:

Û RQ2. How do source code reusability mechanisms impact the severity

of code smells over time?

The empirical study had a statistical connotation: further elaborated

later in this section, we approached the research questions by employ-

ing statistical tests and models. In terms of reporting, we employed the

guidelines by Wohlin et al. [376], other than following the ACM/SIGSOFT

Empirical Standards.2 The dataset and each script used in order to conduct

our study are available in the appendix [411].

Figure 6.1 shows an overview of the methodology followed in order to

address our research questions.

Context Selection

The context of the empirical study consisted of 15 releases of three JAVA

systems such as JHOTDRAW, APACHE ANT, and JEDIT. Table 3.1 reports

2Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given
the nature of our study and the currently available empirical standards, we followed the
“General Standard” and “Data Science” definitions and guidelines.

https://github.com/acmsigsoft/EmpiricalStandards
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information about each of the considered releases, i. e., we provide the

name of the system, the release ID, its KLOC, number of classes, and link

to the repository. In addition, we also report the number of uses of im-

plementation inheritance (Inh_impl), the number of uses of specification

inheritance (Inh_spec), and the number of delegations applied on each of

the releases considered (see Section 3.2).

The context selection was driven by one main requirement, namely,

our willingness to consider a set of projects that were already selected

by similar studies investigating the role of reusability mechanisms [9, 67,

317, 357], in an effort of providing results that might complement the

observations done in those previous studies and enlarge our knowledge

around the impact of inheritance and delegation on software quality. As

such, we identified the three projects more often considered by previous

research in the field.

Table 3.1: Descriptive statistics of the considered software systems.
System (ver.ID) Inh_impl Inh_spec Delegation Classes KLOC Link

JHotDeaw 5.2 (v1) 299 142 57 171 2,275 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.2/

JHotDeaw 5.3 (v2) 398 210 35 241 5,054 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.3/

JHotDeaw 6.0 (v3) 444 183 22 328 10,285 https://sourceforge.net/projects/jhotdraw/files/JHotDraw/JHotDraw60b1/

ANT 1.1 (v1) 146 13 30 100 5,069 https://github.com/apache/ant/releases/tag/rel%2F1.1

ANT 1.2 (v2) 188 14 45 166 16,332 https://github.com/apache/ant/releases/tag/rel%2F1.2

ANT 1.3 (v3) 184 16 46 168 16,841 https://github.com/apache/ant/releases/tag/rel%2F1.3

ANT 1.4 (v4) 235 53 59 241 39,270 https://github.com/apache/ant/releases/tag/rel%2F1.4

ANT 1.5 (v5) 327 70 77 397 140,452 https://github.com/apache/ant/releases/tag/rel%2F1.5

ANT 1.6 (v6) 592 75 81 513 291,882 https://github.com/apache/ant/releases/tag/rel%2F1.6.0

ANT 1.7 (v7) 702 110 101 734 581,329 https://github.com/apache/ant/releases/tag/rel%2F1.7.0

JEdit 3.2.1 (v1) 428 136 132 465 83,442 https://sourceforge.net/projects/jedit/files/jedit/3.2.1/

JEdit 4.0 (v2) 458 134 152 538 116,567 https://sourceforge.net/projects/jedit/files/jedit/4.0/

JEdit 4.1 (v3) 484 139 183 567 133,491 https://sourceforge.net/projects/jedit/files/jedit/4.1/

JEdit 4.2 (v4) 506 149 204 701 200,019 https://sourceforge.net/projects/jedit/files/jedit/4.2/

JEdit 431 (v5) 662 159 209 947 494,462 https://sourceforge.net/projects/jedit/files/jedit/4.3/

Extracting Reusability Metrics

The first step of our empirical study was concerned with the computation

of reusability metrics and, specifically, the adoption of specification in-

heritance, implementation inheritance, and delegation. To extract and

quantify the presence of these mechanisms, we developed an ad-hoc

approach—available in the online appendix [411].

https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.2/
https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.3/
https://sourceforge.net/projects/jhotdraw/files/JHotDraw/JHotDraw60b1/
https://github.com/apache/ant/releases/tag/rel%2F1.1
https://github.com/apache/ant/releases/tag/rel%2F1.2
https://github.com/apache/ant/releases/tag/rel%2F1.3
https://github.com/apache/ant/releases/tag/rel%2F1.4
https://github.com/apache/ant/releases/tag/rel%2F1.5
https://github.com/apache/ant/releases/tag/rel%2F1.6.0
https://github.com/apache/ant/releases/tag/rel%2F1.7.0
https://sourceforge.net/projects/jedit/files/jedit/3.2.1/
https://sourceforge.net/projects/jedit/files/jedit/4.0/
https://sourceforge.net/projects/jedit/files/jedit/4.1/
https://sourceforge.net/projects/jedit/files/jedit/4.2/
https://sourceforge.net/projects/jedit/files/jedit/4.3/
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I M P L E M E N TAT I O N I N H E R I TA N C E ( I N H _ I M P L ) . For a given type

(class), the metric measures the reuse expressed in terms of implementa-

tion inheritance. To better explain how to quantify such reuse, consider

the following example. Let A be a class having N methods; let B be the

superclass of A and let’s assume that B have just one method, named

foo. To increase the value of implementation inheritance, one of the

methods of A must invoke foo. Our tool mines the source code of two

subsequent class releases and checks for cases where the example above

appears. It is important to note that if the class B is a subclass of another

class C, all methods of C are also considered in the computation.

S P E C I F I C AT I O N I N H E R I TA N C E ( I N H _ S P E C ) . For a given type (class),

the metric measures the reuse expressed in specification inheritance. To

quantify the reuse, our devised tool applies the following steps:

• First, it considers all the interfaces. Suppose that the class A inherits

from two interfaces B and C, with C extending another interface

class E. In this case, the sum of the interfaces of A is 3.

• Second, the concept of strict inheritance must be considered. In

the example discussed in the previous point, the tool considers all

the extension points of class A and verifies that A does not override

any methods inherited.

D E L E G AT I O N ( D E L ) . For a given type (class), the metric measures the

reuse expressed in terms of delegation. Given a class A, the tool extracts

all the instance variables it declares. These represent the input of a “fil-

tering procedure” that filters out the variables that have a basic type

(e. g., int, double, String, boolean) or have a non-binding type to the

considered project, i. e., the variable is of a type coming from an external

library, like the class BottomGroup of the javax.swing framework. This

step allows the tool to consider only the instance variables that class A

uses to call methods of other classes belonging to the same project. The

tool verifies whether these remaining instance variables are involved in

external calls, i. e., they are used to delegate operations.
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It is important to remark that we did not rely on existing metrics, like

the Depth of Inheritance Tree (DIT) or the Number of Children (NoC) [68]

since we aimed at computing metrics that could have directly expressed

the adoption of reusability mechanisms. Indeed, our metrics have a finer-

granularity and can indicate the exact constructs added by developers

during software evolution, e. g., the inclusion of a new method that dele-

gates its operations rather than a change in the inheritance structure—this

would not be possible using existing metrics, as they just provide the re-

sult of the actions done by developers, e. g., the increase of the depth of

inheritance tree, without indications of how that was obtained.

RQ1. Analyzing the variation of Delegation, Specification Inheritance, and

Implementation Inheritance over time

When addressing the first research question, we analyzed the distributions

of the three metrics denoting the reuse—Inh_impl, Inh_spec, and Del— to

understand how these evolve. For each subsequent release, Ri and R j , we

applied non-parametric statistical tests to verify whether the distribution

of each reusability metric differed between Ri and R j . First, we applied

the Mann-Whitney test [235], which is the non-parametric version of the

Wilcoxon rank-sum test: the choice was due to the sample size and the

non-normality of the distributions considered [73]. Second, we comple-

mented the analysis with the application of the Cliff’s Delta (δ) [72], which

quantifies the effect size of the observed differences, hence providing a

measure of the extent to which the reusability metrics vary over subse-

quent releases of the considered applications. It is important to note that,

when performing the statistical analyses, we normalized the values of the

reusability metrics by LOC: this was done to account for the natural evolu-

tion that software systems have in terms of size and obtain an unbiased

picture of how developers employ the various reusability mechanisms.

The results were intended to be statistically significant at α= 0.05. Thus,

the null hypotheses tested were:
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• Hn1i , j : There is no statistically significant difference between the

Inheritance Implementation values of version i and Inheritance Im-

plementation values of subsequent version j .

• Hn2i , j : There is no statistically significant difference between the

Inheritance Specification values of version i and Inheritance Specifi-

cation values of subsequent version j .

• Hn3i , j : There is no statistically significant difference between the

Delegation values of version i and Delegation values of subsequent

version j .

where i , j ∈{v1, v2,...vt }, when the system has t versions.

RQ2. Correlation between reuse and code smell severity

We developed a statistical model correlating reusability metrics and other

control factors with increased or decreased code smell severity to address

the second research question.

R E S P O N S E VA R I A B L E . This was represented by the severity of code

smells. To compute it, we first selected the actual code smell types inves-

tigated. These were:

• God Class: A large class with different responsibilities that monopo-

lizes most of the system’s processing [105];

• Spaghetti Code: A class without structure that declares long meth-

ods without parameters [105].

• Complex Class: A class poorly understandable and characterized

by a high cyclomatic complexity [105];

• Class Data Should be Private: A class exposing its attributes, violat-

ing the information hiding principle [105];

Two main observations drove the selection of these code smells. Previous

studies have established a relation between the reusability mechanisms
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and source code complexity (e. g., [8, 9]): as such, we selected code smells

that are connected to code complexity in different manners, for instance

by detecting badly designed, i. e., God Class and Spaghetti Code, or too

complex classes, i. e., Complex Class. We also included the Class Data

Should be Private code smell: its definition suggests a poor use of code

reuse principles and, for this reason, we found it interesting to assess

the evolution of inheritance and delegation to the erosion of the code

connected to this smell.

To detect instances of these code smells we relied on a well-known code

smell detector named DECOR [244], still widely used by recent literature

[81, 136, 156]. It relies on the computation of code metrics that can capture

the properties expressed in the definition of the smells.

For instance, the Class Data Should Be Private smell is identified by

DECOR as classes that have many variables with visibility ‘public’ higher

than 10. The detailed detection rules employed as well as the source code

of the detector are available in our online appendix [411]. The use of

DECOR was motivated by the fact that it represents a good compromise

between execution time and detection accuracy—this compromise has

been demonstrated multiple times in the past [34, 244, 274]. However, it

is worth noting that the use of DECOR did not allow us to focus our study

on other relevant code smell types, namely Parallel Inheritance, Middle

Man, and Refused Bequest. On the one hand, the former code smell can be

detected only using historical analysis [266] and, for this reason, we could

not identify it using code metrics. On the other hand, Middle Man and

Refused Bequest have been detected in the past using dynamic analysis

[202] but, unfortunately, these approaches are neither publicly available

nor easily re-implementable: to avoid the introduction of any bias due to

re-implementation, we excluded these smells from our empirical study.

Once we had identified code smell instances, we proceeded with an-

alyzing how their severity evolved over time. To estimate the severity of

code smells in the release vi , we followed the guidelines by Marinescu

[226]. In particular, DECOR classifies the presence of a code smell using

a heuristic approach that combines multiple metrics: as such, a class is
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considered smelly if and only if a set of conditions are satisfied, where

each condition has the form of metr i ci ≥ thr eshol di . Hence, the higher

the distance between the actual code metric value (metr i ci ) and the fixed

threshold (thr eshol di ), the higher the severity of the code smell to that

specific metric. Following this reasoning, we measured the severity of code

smells as follows: (1) We computed the differences between the actual met-

ric values and the corresponding thresholds used by DECOR [244]; (2) We

normalized the obtained differences in the range [0;1] using the min-max

strategy [273]; and (3) We computed the final severity score as the mean

of the normalized values, ensuring a standardized approach to evaluating

the data. This method provides a balanced representation by averaging

the individual scores after they have been adjusted to a common scale.

As a final step, for each release pair (vi , vi+1) of a project P and for each

code smell instance cs j , we computed the difference between the severity

of cs j in vi+1 and the one in vi . If the resulting difference was higher than 0,

the severity of cs j increased: hence, we labeled the event as an "increase" ;

if the difference was negative, then we labeled the case as a "decrease" ;

otherwise, the event was labeled as "stable". These three labels represented

the response variable of the four models constructed, i. e., we built one

model for each of the code smell considered in the study.

I N D E P E N D E N T VA R I A B L E S . We aimed at assessing the reusability met-

rics, namely the Inh_impl, Inh_spec, and Del metrics whose definition

and computation are reported in Section 3.2.

C O N T R O L VA R I A B L E S . The variability of code smell severity may depend

on different aspects different from the reusability metrics we considered

as independent variables.

We accounted for these aspects when modeling our statistical exercise,

defining some control variables. We first considered a set of code qual-

ity metrics, namely LOC (Lines of Code), WMC (Weighted Methods per

Class), RFC (Response for a Class), LCOM (Lack of Cohesion of Methods),

CBO (Coupling Between Objects), DIT (Depth of Inheritance Tree), and

NoC (Number of Children). We computed these metrics with the MET-
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RICS tool.3 As done for the response variable, we modeled these metrics

by considering the difference between their values in the version vi+1

and the ones in vi , i. e., for the sake of consistency, we modeled their

evolution and the effect it has on the evolution of code smell severity. It

is worth remarking that these control variables are not used by DECOR

for the detection of code smells: in other words, there is no dependency

between independent and dependent variables—otherwise, this would

have caused possible biases when interpreting the statistical results [14].

On the one hand, these metrics have been considered effective to as-

sess source code quality [332, 334]. On the other hand, they estimate a

variety of code quality aspects, such as size, code complexity, coupling,

cohesion, and propensity to reuse—hence, perfectly fitting our goal of

controlling for code quality when evaluating the evolution of code smell

severity. Finally, it is worth remarking on the usage of DIT and NoC.

These are clearly connected to the reusability metrics we considered as

independent variables. Nonetheless, we considered them with the intent

of comparing their statistical power to the adoption mechanisms esti-

mated by our metrics: in other words, their employment allowed us to

assess the importance of the size of the inheritance tree and the number

of children in the inheritance hierarchy with respect to the general usage

of inheritance and delegation—note that we assessed the presence of

possible multi-collinearity due to these related metrics when performing

the statistical modeling.

R U N N I N G T H E S TAT I S T I C A L M O D E L . Given the nature of our categori-

cal response variable, i. e., the categories “decrease”, “stable”, and “in-

crease”, we used a Multinomial Log-Linear model [340] to study the sever-

ity of the four code smells considered. This is a classification method

that is applied when the dependent variable is nominal and composed

of more than two levels. We built our models using R, exploiting the

function multinom available in the package nnet,4 i. e., the models were

fit via neural networks. When constructing the statistical models, we

3https://github.com/qxo/eclipse-metrics-plugin
4https://cran.r-project.org/web/packages/nnet/nnet.pdf

https://github.com/qxo/eclipse-metrics-plugin
https://cran.r-project.org/web/packages/nnet/nnet.pdf
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considered the problem of multicollinearity, which appears when two or

more independent variables are highly correlated and can be predicted

one from the other, possibly biasing the interpretation of the results. In

the context of our work, we applied the guidelines proposed by Allison

[12], who described how to control a model for multicollinearity and

when to ignore it. As a result, we did not remove any of the variables.

This was because the standard errors of the independent variables were

narrow enough not to influence the interpretability of the model nega-

tively: in our case, the standard errors of all the models were lower than

0.9–—note that standard errors must be ≤ 2.5 to produce a sufficiently

narrow 95% prediction interval [232].

When interpreting the model results, the multinom coefficients are rela-

tive to a reference category and indicate how the independent variables

change the chances of the dependent variable being affected with re-

spect to the reference category. We set such a category to “stable” : in this

way, we could understand how the different independent variables vary,

in either a positive or negative manner, the likelihood of the code smell

severity being stable over two releases. For example, a negative coeffi-

cient for an independent variable of the model built when analyzing the

decrease of code smell severity would suggest that for one unit increase

of that variable, the chances of variation of the response variable would

be increased of the amount indicated the coefficient.

3.3 A N A LY S I S O F T H E R E S U LT S

The results of the study are presented in the following.

RQ1. How do developers adopt source code reusability mechanisms during

software evolution?

When addressing the evolution of reusability mechanisms, we first an-

alyzed how implementation inheritance, specification inheritance, and
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(a) (b) (c)

Figure 3.2: How Inh_impl (a), Inh_spec (b), and Delegation (c) change across the
considered versions of JHOTDRAW.

Figure 3.3: How Inh_impl (a), Inh_spec (b), and Delegation (c) change across the
considered versions of ANT.

delegation evolved over the considered projects in absolute terms and

whether the difference between different releases is statistically significant.

Due to space limitation, the detailed table reporting the results of Mann-

Whitney and Cliff’s Delta is in the online appendix [411]. Figures 3.2 to 3.4

depict the evolution of these mechanisms over the releases of the three

considered projects.

The adoption of implementation inheritance follows an increasing trend

in three projects. While this seems to suggest that developers use more

and more frequently this type of reusability mechanism, we also pointed

out the case of JEDIT. In this case, we observed a notable growth between

versions 4.2 and 4.3. To better understand the reason behind this find-

ing, we manually dived into the mailing list of the project, in an effort of

understanding whether the developers themselves commented on this as-

pect in a certain moment in time. This eventually happened on April 10th ,
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(a) (b) (c)

Figure 3.4: How Inh_impl (a), Inh_spec (b), and Delegation (c) change across the
considered versions of JEDIT.

2007. As announced in the “jEdit-announce” mailing list,5 the version

4.3 was substantially revised, not only to include new features and bug

fixing operations, but also to provide new APIs: these latter modifications

have let developers apply consistent editing/refactoring operations of the

source code, which implied the improvement of source code design and a

higher adoption of inheritance mechanisms. While additional qualitative

analyses would be useful to understand the specific reasons why devel-

opers increased the use of implementation inheritance while preparing

the version 4.3 of the project, our findings suggest that the higher adop-

tion was indeed due to the developer’s willingness to provide other reuse

mechanisms such as APIs. Nonetheless, when considering the results from

a statistical standpoint, we could not identify significant variations—both

the Mann-Whitney and Cliff’s Delta tests did not reveal a relevant change

in implementation inheritance adoption when passing from version 4.2

to version 4.3. This is likely due to the effect of size, i. e., the ratio of imple-

mentation inheritance and size was similar in both releases, even though

the reuse was increased in absolute terms. A similar conclusion can be

drawn when looking at the statistical tests of the other systems: there were

no cases of statistically significant changes between two subsequent re-

leases, meaning that, overall, the use of implementation inheritance does

not vary too much over the evolution history when controlled for size.

5Thread in the “jEdit-announce” mailing list: https://sourceforge.net/p/jedit/
mailman/jedit-announce/?viewmonth=200710.

https://sourceforge.net/p/jedit/mailman/jedit-announce/?viewmonth=200710
https://sourceforge.net/p/jedit/mailman/jedit-announce/?viewmonth=200710
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ø Key findings of RQ11.

implementation inheritance has been increasing over time, although

this increase is not statistically significant. In JEDIT, the increased

adoption was likely due to developers’ willingness to improve APIs.

Turning to the specification inheritance, from Figures 3.2-3.4 we could

observe a similar trend with respect to the one discussed above. The adop-

tion tends to increase over time in absolute terms, but without any sta-

tistically significant change. Hence, we can claim that the evolution is

basically stable over time. A slight exception was represented by JHOT-

DRAW, where we observed a decrease adoption when passing from release

5.3 to 6. Analyzing this case further, we could find that the JHOTDRAW

team decided to apply substantial changes to the system, likely affecting

the reusability mechanisms previously used and preferring other strategies

(e. g., implementation inheritance) over specification inheritance.

ø Key findings of RQ12.

The adoption of specification inheritance is stable over time. The only

exception was JHOTDRAW, that preferred to use different reusability

mechanisms while defining a new milestone.

Finally, the reuse in terms of delegation follows a similar increasing

trend in ANT and JEDIT, with the exception of JHOTDRAW. When analyzing

the evolution of the latter system more closely, we could not really derive

a clear motivation behind the decreasing trend. This might potentially

be connected to a progressive reluctance of designing source code for

delegation, however it is important to note that, also in this case, the

statistical results did not reveal significant changes. This implies that the

differences observed in absolute terms are balanced by the increasing

number of lines of code.
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ø Key findings of RQ13.

The adoption of delegations increases over time, but not in a statisti-

cally significant way. The exception is the one of JHOTDRAW, where the

trend observed suggests a progressive reluctance to this mechanism,

which might be worth studying in the future.

Table 3.2: Results of the statistical models for each smell in the analysis. The
table shows the value of the estimates and the significance through the
asterisk.

Spaghetti Code God Class Class Data Should Be Private Complex Class

Variables Decrease Increase Decrease Increase Decrease Increase Decrease Increase

Delegation 0.011∗∗∗ -0.358∗∗∗ 1.054∗∗∗ -1.363∗∗∗ 0.016∗∗∗ 0.330∗∗∗ 0.011∗∗∗ -0.358∗∗∗
Implementation Inheritance -0.094∗∗∗ -0.061∗∗∗ 0.048∗∗∗ 0.003∗∗∗ -0.016∗∗∗ -0.008∗∗∗ -0.094∗∗∗ -0.061∗∗∗
Specification Inheritance 0.002∗∗∗ -0.023∗∗∗ 0.028∗∗∗ 0.036∗∗∗ 0.022∗∗∗ -0.010∗∗∗ 0.002∗∗∗ -0.023∗∗∗
DIT 0.060∗∗∗ 0.180∗∗∗ -0.274∗∗∗ 0.108∗∗∗ -0.133∗∗∗ 0.004∗∗∗ 0.060∗∗∗ 0.180∗∗∗
NOC -0.009∗∗∗ 0.007∗∗∗ -0.053∗∗∗ 0.002∗∗∗ 0.032∗∗∗ 0.004∗∗∗ -0.009∗∗∗ 0.007∗∗∗
LOC -0.000 -0.000 -0.000 -0.000 0.000∗∗ -0.000 -0.000 -0.000

LCOM 0.910∗∗∗ -0.101∗∗∗ -0.177∗∗∗ -3.218∗∗∗ 0.408∗∗∗ 0.230∗∗∗ 0.910∗∗∗ -0.101∗∗∗
WMC 0.0005 -0.0004 -0.002 -0.001 0.001 -0.001 0.0005 -0.0004

CBO -0.327∗∗∗ 0.201∗∗∗ -0.679∗∗∗ 0.870∗∗∗ 0.023∗∗∗ -0.453∗∗∗ -0.327∗∗∗ 0.201∗∗∗
RFC 0.001 0.003∗∗ 0.008∗∗∗ 0.003 0.002 0.005∗∗∗ 0.001 0.003∗∗∗
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

RQ2. How do source code reusability mechanisms impact the severity of

code smells over time?

Table 3.2 shows the results of the statistical models built for each of the

smells considered in Section 3.2. In the first place, it is important to rec-

ognize that the decrease of the CK metric values—considered as control

variables in our models—correlate well with the decreasing of code smell

intensity. This phenomenon was somehow expected since code quality

metrics have always been used as variables to predict and monitor code

smells [244, 344]: as such, we can confirm the impact of these metrics on

the variability of code smells.

Starting from Spaghetti Code, we could observe that delegation and the

specification inheritance correlate well with the variability of code smell

intensity. When they decrease, we found a positive correlation with the
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increase of the intensity of code smells. This result seems to perfectly fit

the nature of this smell. One of the causes leading to the emergence of this

smell and its degradation is indeed the inexperience with object-oriented

design technologies: our results suggest that a decrease in the use of in-

heritance and implementation, which are widely considered as relevant

for a successful application of object-orientation [105], leads to increase

the chances of this smell being harmful. As for the implementation inheri-

tance, we found that its decrease causes instability, i. e., we found negative

estimates when considering both the model build to study the increase and

decrease of code smell intensity. From a practical perspective, this means

that the specific uses of this mechanism may lead to different results.

Moving to God Class, we noticed that the increase of delegations may

contribute to the decrease of intensity, while both the inheritance metrics

create instability. If a class affected by this smell increases the usage of the

delegation mechanism, this means that the overall number of responsibili-

ties it manages is reduced: this may explain the reason behind the severity

reduction. At the same time, an increasing use of inheritance implies ex-

actly the opposite, with the God Class including more and more methods

coming from its superclasses. As such, our findings suggest that an appro-

priate use of delegation might result in an improvement of code quality

with respect to the emergence of God Class instances: this is also demon-

strated by the way some state-of-the-art refactoring tools actually deal

with this code smell: as an example, JDEODORANT [101] realizes Extract

Class refactoring operations by means of delegations, namely by moving

methods from the God Class to other classes, letting the original class rely

on those methods by means of delegation.

As for Class Data Should Be Private, we noticed expect for delegation, the

lower the presence of inheritance, the higher the chances of the code smell

severity being decreased. This result may be concerned with the encap-

sulation principle that characterizes this code smell. As stated by Gamma

et al. [108] “inheritance mechanism often breaks encapsulation, given that

inheritance exposes a subclass to the details of its parent’s implementation”.

A lower use of these reusability mechanisms naturally makes classes less
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exposed, hence reducing the risks connected to the presence of a Class

Data Should Be Private.

Considering Complex Class, we noticed that these metrics can help de-

creasing the variability of the smell. This is, likely, the most interesting out-

come of our analysis. Previous studies [8, 9, 304] have established a relation

between the use of reusability mechanisms and source code complexity:

with respect to those papers, our findings suggest that keeping inheritance

and delegation under control may lead developers to reduce the risks of

increasing complexity. In this respect, our empirical study provides an

additional take on the role of reusability for software maintainability.

Finally, looking at the control factors related to inheritance, i. e., DIT

and NOC, we noticed that they lead to higher instability compared to

our independent variables, possibly indicating that the pure adoption

of inheritance and delegation might be used to better monitoring the

variability of code smell severity, correlating better the phenomenon.

ø Key findings of RQ2.

In most cases, delegation and inheritance metrics positively correlate

to the decrease of the code smell severity. Nonetheless, in some cases,

their presence causes instability.

3.4 T H R E AT S T O VA L I D I T Y

This subsection discusses possible threats that could have affected our

results and how we mitigated them.

C O N S T R U C T VA L I D I T Y. Threats to construct validity concern with the

relationship between theory and observation. The main discussion point

in this respect is related to the dataset exploited. We are aware that the

projects selected could have influenced the extent of the analysis, yet we

relied on projects that have been previously used in similar experimen-

tations to extract results that might have been as comparable as possible.

Future investigations will extend our understanding on the evolutionary
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aspects of reusability mechanisms. An additional threat concerns the

data collection procedures: these were either based on well-established

tools, e. g., METRICS, or classical definitions of metrics, e. g., the compu-

tation of reusability metrics. In any case, we made all scripts and data

publicly available for the sake of verifiability.

As for the identification of code smells, we relied on DECOR [244], which

is a state-of-the-art detector [274]. Its accuracy might have influenced the

quality of the information reported in the dataset: while we recognize

this limitation, we also point out that the choice of this detector was

based on the compromise between quality and performance it ensures

[34, 244, 274]. In our future research agenda, we plan to assess the impact

of false positives/negatives on the achieved results.

I N T E R N A L VA L I D I T Y. Threats to internal validity concern factors that

might have influenced our results. In the context of RQ2, we defined

some control variables that could estimate, in a more appropriate man-

ner, the effect of reusability metrics on the variation of code smell severity.

The selection of those metrics was based on the state-of-the-art analysis,

namely on identifying the metrics that have been previously connected

to the evolution of code smells.

C O N C L U S I O N VA L I D I T Y. A major threat to the conclusions drawn is re-

lated to the statistical methods employed. In RQ1, we used well-known

tests widely exploited by the research community, i. e., Mann-Whitney

and Cliff’s Delta. Before using them, we verified the normality of the

data, which is the main requirement leading to their use. As for RQ2, the

selection of the Multinomial Logistic Linear statistical approach [340]

was driven by the fact that our response variable was categorical and

composed of three levels. By definition, this statistical approach can han-

dle multiclass problems with categorical and continuous independent

variables, therefore fitting the problem of interest. While designing the

model, we also controlled for possible multi-collinearity, hence avoiding

bias in the interpretation of the results [262].
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E X T E R N A L VA L I D I T Y. Threats in this category mainly concern with the

generalization of results. We analyzed 15 releases of three open-source

software systems from different application domains with different char-

acteristics (size, programming languages, number of classes, etc.). Of

course, we cannot claim the generalizability of the findings to other sys-

tems; our future research agenda includes the extension of the study

with a more different set of systems.





4
O N T H E A D O P T I O N A N D E F F E C T S O F S O U R C E C O D E

R E U S E O N D E F E C T P R O N E N E S S A N D M A I N T E N A N C E

E F F O R T

4.1 I N T R O D U C T I O N

Software reusability is the design principle that allows developers to reuse

part of the existing software to implement new features [44, 326]. This

practice is widely recognized as one of the key assets of software develop-

ment, as developers may have multiple benefits, such as the reduction of

evolution time, effort, and cost, other than the reduction of risks of source

code being affected by defects [183, 306, 316].

Despite the availability of a large body of knowledge on how inheritance

and delegation mechanisms contribute to the prediction of source code at-

tributes, most prediction models defined so far made a strong assumption:

developers use reusability principles while evolving source code.

First, the extent to which these mechanisms are used in practice might

notably impact their contribution to prediction models. Second, it is un-

clear how the relationship between reusability and source code attributes

varies and whether inheritance and delegation mechanisms should still

be considered for prediction as the system evolves.

In this chapter, we propose an empirical investigation to fill the limita-

tions of current research concerning the adoption of reusability practices

and their evolutionary effects on two specific source code attributes such

as defect proneness and maintenance effort. We select these attributes as

they represent two interesting use cases to assess reusability mechanisms.

On the one hand, these mechanisms are supposed to reduce fault prone-

ness and maintenance effort [183, 306, 316]. On the other hand, several

47
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prediction models targeted the early location of defects and estimation of

the effort required to perform evolutionary tasks [56, 252, 271].

We first mine the DEFECTS4J dataset to extract commit-level information

on the reusability mechanisms adoption. Then, we developed statistical

models to assess the contribution of reusability mechanisms on defect

proneness—as indicated by the number of defects over time—and mainte-

nance effort—as indicated by the code churn of commits. The main results

report on the inheritance and delegation usage patterns of the 12 projects

considered, highlighting that (1) developers tend to frequently use these

mechanisms and (2) their adoption varies significantly over time. Fur-

thermore, we identify a statistical relation, corroborated by a fine-grained

qualitative investigation, between the adoption of inheritance and delega-

tion and both defect-proneness and maintenance effort, hence concluding

that software reuse is a relevant component that affects the way source

code quality evolves.

4.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The goal of the study was to (1) investigate the adoption of reusability

mechanisms over time and (2) assess their impact on defect-proneness

and maintenance effort. The purpose was to understand whether those

mechanisms can provide developers with an indication of source code

quality variation—considering the defect-proneness and effort to fix faults

of a project. The quality focus was on the reusability in terms of imple-

mentation inheritance, specification inheritance, and delegation and their

evolution within software projects. The perspective was that of practition-

ers and researchers: the former are interested in understanding whether

the reusability mechanisms can be suitable for monitoring the quality of

a system, while the latter are interested in improving their knowledge on

how inheritance and delegation mechanisms can vary over time and im-

pact source code quality. The context of our investigation was composed

of publicly available JAVA projects, as detailed in Section 4.2.
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Based on the goal of our study, we formulated three main research ques-

tions. The first aimed at understanding the use of source code reusability

mechanisms by developers during software evolution.

Specifically, we asked:

Û RQ1. How does the use of source code reusability mechanisms vary

during software evolution?

The goal of RQ1 was that of providing insights on the evolution of reuse

mechanisms that might later be exploited to interpret the findings of RQ2

and RQ3. The patterns observed in the context of this research question

will also be useful to understand the effects of inheritance and delega-

tion on defect-proneness and maintenance effort, e.g., should we identify

an exponential growth in the adoption of delegation, this would poten-

tially make this mechanism more relevant for software evolution, hence

influencing more the amount of effort required to apply modifications.

Since we analyze three mechanisms for reusability, i. e., specification

inheritance, implementation inheritance, and delegation [49], that can

impact software evolution, we considered three sub-research questions:

R Q 1.1 . How does the use of implementation inheritance vary during soft-

ware evolution?

R Q 1.2 . How does the use of the specification inheritance vary during soft-

ware evolution?

R Q 1.3 . How does the use of delegation vary during software evolution?

Once the evolution of reusability mechanisms was analyzed, we investi-

gated how the evolution might affect code quality, initially measuring it in

terms of fault-proneness. Hence, we asked our second research question:

Û RQ2. How do source code reusability mechanisms impact fault-

proneness over time?
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Finally, we assessed the impact of reusability mechanisms on the main-

tenance effort required to fix faults. Among the various direct and indirect

metrics available in literature [377], we operationalize maintenance effort

through code churn, that is, the number of lines of code modified within a

commit. This is an indirect metric that can proxy the actual effort spent by

developers when maintaining source code [234, 251, 377].

In particular, we asked:

Û RQ3. How do reusability mechanisms impact code churn?

Figure 6.1 overviews the research process applied to address our re-

search questions. After the first data extraction phase, where we collected

data about inheritance, delegation, and other code quality indicators, we

integrated the various information for further analysis. This way, the re-

search questions were addressed by employing statistical tests and models

(see details in Section 4.2). To design and report the empirical study, we

followed the guidelines proposed by Wohlin et al. [376] and the ACM/SIG-

SOFT Empirical Standards1. We made all the experimental materials (e. g.,

datasets, scripts) publicly available in an online appendix [119].

Context of the Study

The context of the study was composed of JAVA projects available within

the DEFECTS4J dataset, which collects information on over 800 real bugs

of open-source systems. According to the official documentation2 each

bug collected into the dataset is characterized by the following properties:

1. It is reported in the issue tracker of the project, has an associated

commit message for resolution, and is fixed in a single commit, i. e.,

the defect resolution never refers to more than one commit;

1Available at: https://github.com/acmsigsoft/EmpiricalStandards
2https://github.com/rjust/defects4j

https://github.com/acmsigsoft/EmpiricalStandards
https://github.com/rjust/defects4j
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Figure 4.1: Overview of the research process applied in the study.

2. It is associated with the corresponding triggering test case to facili-

tate its reproduction;

3. It is minimized, meaning that the DEFECTS4J maintainers manually

removed commits that would have induced noise, namely commits

that did not actually provide information about the introduction of

defects or fixing activity (e. g., commits where refactoring activities

were done);

4. The fixing activities modified the source code. This means that the

defect introduction can be caused by several factors, e. g., wrong

parameters in configuration files and problems in the production

class. However, the corresponding fixing only concerns changes

within the source code.

By design, the dataset does not include all the defects reported in the

issue trackers of the considered projects, but only those matching the

inclusion criteria reported above. In this respect, there are some consider-

ations to make. First, these criteria led to the definition of a set of defects

having two key properties: (1) All the defects were true positives, verifiable,
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and traceable, meaning that there exists at least one test case letting the

defective behavior of the code emerge, other than precise indications on

the inducing-fix commit pairs reported by the developers, which were in-

strumental for our analysis, as further discussed in the following sections;

(2) The dataset was carefully designed to avoid potential biases that could

arise from uncontrolled conditions, such as tangled changes [148], which

could significantly impact the validity of our study’s conclusions. Specifi-

cally, we excluded refactoring actions related to inheritance and delegation

that were not associated with defect fixing operations to ensure that the

data reflected genuine associations rather than incidental correlations.

As a consequence of these two properties, the choice of DEFECTS4J

enabled the investigation of the impact of reuse mechanisms in a noise-

free environment in which we could have provided more precise insights

into the actual role played by inheritance and delegation. In any case, we

are aware that the dataset contains a subset of the defects included in

the issue trackers of the considered projects and that the missing analysis

of some defects might potentially bias our conclusions. In response to

this potential threat to validity, we (i) analyzed further the anatomy of

the dataset to better characterize our sample - this is discussed in the

remainder of this section; and (ii) conducted additional analyses aiming

at assessing the types of defects that were not included in our analysis -

these are part of Section 8.4.

In addition to the discussion on the use of DEFECTS4J, it is worth re-

marking that, despite the defects being carefully selected, those defects

are of different types and natures, hence representing various defects af-

fecting real-world software systems [322]. Last but not least, DEFECTS4J

has been widely used in literature (e.g., [90, 228]), hence representing a

valuable asset that enables us to build additional knowledge on a state-of-

the-art dataset - this would also be useful for other researchers interested

in building on top of our work.

Little has been done to analyze code reuse mechanisms over time and

how those may contribute to explaining fault-proneness and maintenance

efforts during software evolution. For this reason, our analysis focused on
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Table 4.1: Characteristics of the projects considered in the study. The column
‘LOC’ provides a range reporting the minimum and maximum values
observed over the history of the projects.

Project Name # Bugs Pull Request Contributors Stars Forks Commits Branches LOC Analyzed

Commons-Codec 18 9 40 364 207 2,244 7 48k - 34k

Commons-Cli 39 8 42 255 154 1,169 4 5k - 16k

Commons-Collections 4 37 62 551 389 3,729 8 49k - 60k

Commons-CSV 16 8 37 281 220 1,796 4 166k - 166k

Commons-Compress 47 9 67 231 210 3,602 9 129k - 91k

Gson 18 151 125 21,2k 4,1k 1,668 14 68k - 70k

Jackson-Core 26 2 63 2.1k 690 2,124 21 33k - 66k

Jackson-Databind 112 19 198 3,1k 1,2k 6,578 22 98k - 235k

Jackson-Dataformat-XML 6 3 26 497 189 1,318 19 59k - 117k

Commons-JXPath 22 8 17 18 40 601 4 46k - 26k

Joda-Time 26 2 77 4,8k 922 2,196 6 103k - 164k

Closure-Compiler 174 6 472 6,5k 1,1k 17,962 76 60k - 60k

JSoup 93 43 99 9,6k 2k 1,693 3 39k - 34k

Commons-Lang 64 92 174 2,3k 176 6,859 8 160k - 190

Commons-Math 106 68 48 451 71 7,004 17 58k - 63k

Mockito 38 7 246 13,1k 2,3k 5,787 16 73k - 94k

JFreeChart 26 22 24 866 355 4218 3 250k - 290k

the analysis of code reuse mechanisms from a low granularity perspective,

i. e., commits. We analyzed over 44,900 commits. With respect to our initial

plan [120], we had to discard five projects from the total amount of systems

available in the dataset. This was mainly due to repository inconsistencies

caused by developers’ removal of defective commits.

Table 4.1 reports statistics of the projects included in the DEFECTS4J

dataset. For each project, the table provides (I) the number of defects, (II)

process metrics such as number of commits, number of pull requests, and

number of contributors; (III) its minimum and maximum LOC; and (IV)

if the project could have been analyzed. More particularly, we exploited

the latest version of DEFECTS4J (v2.0.0). The defects contained in this

version were identified by the original authors using JAVA 1.8, which is the

JAVA version used by all the projects considered in the study. The reliance

on JAVA 1.8 had some implications on the number of defects reported

in the dataset. More particularly, some behavioural changes introduced

under JAVA 8 did not allow the verification of 29 of the defects reported in

previous versions of DEFECTS4J. As such, these 29 defects were considered

deprecated and no longer relevant in DEFECTS4J 2.0.0. In the light of this

consideration, we excluded them from our study. These defects indeed

violated the first property mentioned above: on the one hand, they were
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not verifiable; on the other hand, they were not necessarily true positives,

as they were re-labelled by the original authors as non-defective when

verifying them through the most appropriate JAVA version, namely the one

employed within the corresponding systems.

Data Extraction Procedure

To answer our research questions, we quantified the reusability mecha-

nisms employed within the considered software projects. To this aim, we

operationalized three metrics capturing reusability mechanisms such as

implementation inheritance, specification inheritance, and delegation. We

did not rely on existing metrics, like the Depth of Inheritance Tree (DIT) or

the Number of Children (NoC) [68], since we aimed at computing metrics

that could have directly expressed the adoption of reusability mechanisms.

Indeed, our metrics have a finer granularity and can indicate the exact con-

structs added by developers during a change/commit, e.g., the inclusion of

a new method that delegates its operations or a change in the inheritance

structure—this would not be possible using existing metrics, as they just

provide the result of the actions done by developers, e.g., the increase of

the depth of inheritance tree, without indications of how that was obtained.

To compute the implementation inheritance, specification inheritance,

and delegation metrics, we used a tool already validated in our previous

work [118]. It computes the metrics following these patterns:

S P E C I F I C AT I O N I N H E R I TA N C E . Given a class B, the tool considers the

specification inheritance as the arithmetical sum of each interface used

by B. For instance, suppose that B inherits methods from two interfaces

A and C, and C in turn inherits methods from another interface D. In this

case, the specification inheritance for B is 3.

I M P L E M E N TAT I O N I N H E R I TA N C E . Suppose B is a sub-class of A, the

tool considers the implementation inheritance as the arithmetical sum

of each method in A called by some method in B. For example, suppose

that B is a class with N methods, and A a class with just one method call



4.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D 55

bar(). To increase the number of implementation inheritance by one,

one of the methods in B must invoke bar().

D E L E G AT I O N . Given a class A, the tool considers the delegation metric

as the arithmetical sum of each non-primitive variable (i.e., variables

different from int, double, String, and so on) or variables that do not

have a binding type provided by external libraries (e.g., Checkbox offered

by javax.swing framework). For each variable, the tool verifies if it is

only used to invoke external objects.

The metrics were computed over all the commits of the considered

systems and were used to address RQ1. Specifically, for each commit we

computed the sum of (i) specification and implementation inheritance

uses and (ii) delegation uses by statically analyzing the files involved in the

commit. As for RQ2 and RQ3, we collected information on defects and code

churn. To this aim, we mainly relied on the information made available

by the DEFECTS4J dataset. In particular, for each project of the dataset,

DEFECTS4J assigns to each defect a unique ID and stores an inducing-

fixing commit pair, i.e., a pair of commits reporting when the defect was

introduced and fixed, respectively, over the history of the project. Start-

ing from these inducing-fixing commit pairs, we could reconstruct the

defect history of each project by overlaying them on the full set of commits

of the project and considering as defective all the commits between the

inducing-fixing commit pairs. As for the code churn, these were collected

by exploiting PYDRILLER, an automatic static analysis tool that can ana-

lyze GIT repositories to extract information about commits, developers,

modifications, diffs, and source code.3 In our case, we run PYDRILLER

over the commits of the considered systems and extracted the number of

modifications performed by developers, i.e., the code churn.

Data Analysis Procedure

The collected data were further analyzed as follows:

3https://pydriller.readthedocs.io/en/latest/intro.html
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1. RQ1 - Evolution of reusability mechanisms over time.

To address this research question we analyzed how reusability met-

rics (implementation inheritance, specification inheritance, and del-

egation) vary over the evolution of the software systems considered.

In particular, we employed basic statistical analysis and visualized

results using plots.

2. RQ2 - Impact on defect-proneness of reuse over time.

In this respect, we built a statistical model to verify how reusability

metrics impact the variability of defects in the source code.

3. RQ3 - Impact on maintenance effort of reuse over time.

Similarly to RQ2, we built a statistical model to verify how reusability

metrics impact the maintenance effort to fix a bug.

The statistical models were devised as reported in the following.

I N D E P E N D E N T VA R I A B L E S . We used the reusability metrics, i. e., imple-

mentation inheritance, specification inheritance, and delegation, as

independent variables.

R E S P O N S E VA R I A B L E . In the context of RQ2 we were interested in un-

derstanding how the reusability metrics impact the defect-proneness

of software systems over time. Starting from the defect history built by

exploiting DEFECT4J, we modeled our response variable as follows. Let

Ci be a generic commit of the change history of the project P . The num-

ber of defects affecting P at the time of Ci was computed through the

#de f ect s(Ci ) function, which relies on the following system of equa-

tions:

#de f ect s(Ci ) = #de f ect s(D4JCi
)−# f i xedDe f ect s(D4JCi

), if i = 1;

#de f ect s(Ci ) = #de f ect s(Ci−1)+ (#de f ect s(D4JCi
)−# f i xedDe f ect s(D4JCi

)), if i > 1;

(4.1)
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where #de f ect s(D4JCi ) indicates the number of defects in DEFECTS4J

having as inducing commit Ci , # f i xedDe f ect s(D4JCi ) indicates the

number of defects fixed in the commit Ci , computed as the amount of

defects fixed according to DEFECTS4J in Ci , and #de f ect s(Ci−1) indi-

cates the number of defects affecting P at commit Ci−1. As shown, we

had to distinguish the case of the first commit (i=1) from the rest (i>1).

When considering the first commit, there cannot indeed be previous

fixing operations that influenced the number of defects and, as such, the

number of defects at the first commit is only due to the difference be-

tween the number of defects pointed out by DEFECTS4J and the number

of defects fixed in the same commit. When considering the other com-

mits, instead, the number of defects at the time of the generic commit Ci

is given by the total number of defects at time Ci−1 plus the operations

performed within Ci , both in terms of defects introduced and fixed. After

computing the number of defects affecting the considered systems at

each commit, we analyzed how this number varied.

Let Ci and Ci+1 be two subsequent commits of the change history of the

project P ; we labeled the commit pair (Ci ,Ci+1) as stable, increased, or

decreased using the l abel (Ci ,Ci+1) function described in the following:

l abel (Ci ,Ci+1) =


‘St able′ if #de f ect s(Ci ) = #de f ect s(Ci+1);

‘Incr eased ′ if #de f ect s(Ci ) < #de f ect s(Ci+1);

‘Decr eased ′ if #de f ect s(Ci ) > #de f ect s(Ci+1).

(4.2)

In other terms, we exploited the information previously collected on the

number of defects at each commit of the change history of the project P

to describe how the amount of defects varied over time.

In RQ3, instead, we were interested in assessing the effect of reusability

metrics on the effort required to fix defects, as measured by code churn.

Starting from the defect history of each project, we considered, as rele-

vant for the research question, the commits marked as fixing commits.
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Afterwards, we computed our response variable as the sum of the code

churn of the files involved in those commits.

C O N T R O L VA R I A B L E S . We calculated several control variables to ensure

that the impact on the response variables in our statistical models was

not solely due to the independent variables. We computed the Chi-

damber and Kemerer (CK) metrics [68], which include the following:

DIT (Depth of Inheritance Tree), NOC (Number Of Children), LOC (Lines

of Code), LCOM (Lack of Cohesion of Methods), WMC (Weighted Meth-

ods per Class), RFC (Response for a Class), and CBO (Coupling Between

Objects). These metrics are crucial for understanding various structural

attributes of software that could influence the outcomes of our models.

In RQ2, we also considered the code churn as control variable as sug-

gested by previous findings in the literature [252], i.e., we verified

whether the variation of the number of defects was due to the amount of

changes performed by developers within commits. This metric was not

considered in RQ3, as it was directly connected to the response variable

and could, therefore, bias the conclusions.

With respect to the control variables considered in the study, it is im-

portant to discuss the role of NOC and DIT. These two metrics are by

definition connected to code reusability and measure indeed two aspects

related to how developers reuse existing source code through inheritance.

We included them with the intent of comparing their statistical power

to the reusability metrics considered as independent variables. In other

terms, the inclusion of NOC and DIT allowed us to assess the extent to

which the reusability metrics we computed represent relevant factors for

the response variables when compared to state-of-the-art metrics.

Before building the statistical models, we assessed the presence of possi-

ble multi-collinearity concerns. These arise when two or more variables

are excessively correlated, possibly biasing the statistical model and the

subsequent interpretation of the results [262]. In this respect, we fol-

lowed well-established guidelines [12, 201]. For each pair of variables,

we computed the Spearman’s correlation coefficient [336]. If this scored



4.3 A N A LY S I S O F T H E R E S U LT S 59

higher than 0.7, we removed the variable having the most complex def-

inition to favour explainability. For instance, we preferred keeping the

LOC metric rather than WMC to make interpreting the results easier.

C H O O S I N G T H E S TAT I S T I C A L M O D E L . To address RQ2 we built a

Multinomial Log-Linear Model [340]. This model generalizes logistic

regression to multi-class problems, matching our need to have a model

able to handle our response variable composed of three values (“stable”,

“increased”, “decreased” ). As done in our previous work [118], we used R

for running the analysis using the function MULTINOM available in the

package NNET.4

In RQ3 we had to build a different model because of the nature of the

response variable, i. e., code churn. In particular, we built a Generalized

Linear Model [95] using the GLM function available in R.

Public Availability of Data

To guarantee the replicability of our work and enable other researchers to

build on top of our analyses, we made all data and scripts publicly available

in our online appendix [119].

4.3 A N A LY S I S O F T H E R E S U LT S

In the following sections, we report and discuss the results addressing the

research questions of the empirical study. For the sake of comprehensibil-

ity, we split the discussion by RQ.

RQ1 - On the Variation of Reusability Mechanisms in Source Code

Figure 4.2 shows how the three reusability mechanisms considered in

our study, i.e., implementation inheritance, specification inheritance, and

delegation, evolve in the considered software projects. Each row of the

4https://cran.r-project.org/web/packages/nnet/nnet.pdf
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Figure 4.2: RQ1. Adoption of Reusability Mechanisms Over Time.
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figure reports the evolution of the metrics for the two projects separately.

To facilitate the interpretation of the results and enable a more seamless

comparison of evolutionary trends across diverse projects, we normalized

the reusability metrics by lines of code—the figure shows the amount of

implementation inheritance, specification inheritance, and delegation

mechanisms applied per line of code over the evolution history of the

considered projects. These trends were used to interpret the results and

address the specific sub-research questions defined in the context of RQ1.

RQ1.1 - Variation of Implementation Inheritance Over time.

As for the implementation inheritance, the trends in Figure 4.2 do not

always follow a common tendency among the projects.

I N C R E A S I N G - D E C R E A S I N G PAT T E R N . As illustrated in Figure 4.3, we

observed an initial increasing trend in the adoption of implemen-

tation inheritance in seven projects, namely CLOSURE-COMPILER,

COMMONS-CLI, COMMONS-CSV, GSON, JACKSON-DATABIND, JACKSON-

DATAFORMAT-XML, and JODA-TIME, which was subsequently followed

by a decline in usage.

While the shape of the curves varies from case to case, we can still see a

common pattern. When we look at these cases, we can identify a similar

behavior among the developers of those systems. In all the cases, the

adoption of implementation inheritance quickly increased during the

first commits, suggesting that developers approached the design of the

systems to take reusability into account. Nonetheless, the trend quickly

decreased after a while, leading implementation inheritance to be used

less and less over time.

This trend leads us to formulate two observations. Firstly, the decline in

adoption following a peak could be indicative of a phenomenon known

as “design erosion” in the literature (in cases where the principle of

Liskov is violated) [349]. Regardless of the intentions of developers and

designers, software design tends to degrade over time due to ongoing

changes and increasing complexity, as highlighted by Lehman’s laws
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Figure 4.3: Increasing - Decreasing Pattern.
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[192]. This erosion can also be attributed to inadequate utilization of

software quality measures, as emphasized in previous research [87, 351,

352]. Our findings seem to suggest implementation inheritance is not

exempt from this trend, and its adoption is likely to decrease over time.

In the second place, the “increasing-decreasing” trend might have im-

plications on how reuse mechanisms should be considered within pre-

diction approaches, e.g., defect prediction. Indeed, the employment of

implementation inheritance should be carefully considered, and per-

haps the usage trend might even lead to the definition of novel feature

selection procedures that monitor how developers use certain program-

ming constructs to inform the model of the most promising features to

consider in that evolution moment.

S T E A D Y- I N C R E A S I N G PAT T E R N . Looking at Figure 4.2, we can identify

three less common usage patterns. In particular, two projects, namely

COMMONS-COLLECTIONS (3rd row) and COMMONS-JXPATH (4th row), ap-

pear to exhibit a “steady-increasing” trend. The nature of these projects

seems to offer a natural explanation for this trend. The former project

provides a framework to use efficient data structures in JAVA, while the

latter implements an interpreter of the XPATH expression language. Both

projects are structured so that most of the source code relies on a core set

of classes. For instance, in the COMMONS-COLLECTIONS project, classes

within the list package establish the foundation for creating various

advanced element lists. This seems encouraging developers to employ

reuse mechanisms like implementation inheritance.

S TA B L E PAT T E R N . Two other projects, namely COMMONS-CODEC (1st

row) and JACKSON-CORE (1st row) of Figure 4.2, follow a “stable” trend.

In both cases, the amount of implementation inheritance uses remains

constant throughout the evolution. We analyzed the repositories of those

projects deeper to understand this trend. While we could not identify

any specific tool or verification procedure conducted by developers

to keep reusability under control, we could observe that most of the

commits performed over the last years were peripheral [20], namely, they
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pertained to packages of the systems other than core. This may explain

the observed trend: developers did not modify any central part of those

systems, leaving the original design stable and avoiding an excessive

effect of design erosion.

D E C R E A S I N G - I N C R E A S I N G PAT T E R N . COMMONS-COMPRESS project

(5th row in Figure 4.2) exhibited an anomalous trend which we coined

“decreasing-increasing”. After a greater adoption of implementation in-

heritance, the trend steadily decreased before increasing again, but at a

lower rate. We manually dived into the repository in search of possible

explanations. We discovered that after the release of the second version

of the project in 2010 (release commons-compress-1.1), the release engi-

neering process of the system changed, passing from annual to monthly

releases. This switch caused a substantial rework of the original architec-

ture, replacing existing code with third-party libraries. Consequently, the

overall amount of implementation inheritance uses suddenly decreased

in favour of other code reuse mechanisms. Afterwards, the developers of

the system kept the implementation inheritance under control, leading

to an increasing usage trend.

RQ1.2 - Variation of Specification Inheritance Over time

When considering the specification inheritance, the usage patterns iden-

tified in RQ1.1 still hold. In particular, we observed the same “increasing-

decreasing” trend in COMMONS-CLI, while in COMMONS-CODEC a “sta-

ble” trend. These findings seem to suggest the existence of a possible

strict (cor)relation between implementation and specification inheritance

throughout the evolution of software systems, which might depend on

the willingness of developers to take (or not) code reusability into account

when evolving source code. Part of our future research agenda will consider

the effects of this co-evolution of metrics on software quality.
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RQ1.3 - Variation of Delegation Over time

Regarding the delegation, we could observe similar usage patterns dis-

cussed above. Nonetheless, we could also discover situations where the

evolution of delegation followed an opposite trend with respect to imple-

mentation and specification inheritance ones. This is, for instance, the

case of COMMONS-COLLECTIONS. Indeed, starting from a high adoption

during the first development phases, the amount of delegation used kept

decreasing till reaching a stable level. This result was, however, somehow

expected as inheritance and delegation are alternatives to each other [49]

and, therefore, an increasing use of one may lead to a decreasing use of the

other. Similar results were observed when analyzing other projects, e.g.,

CLOSURE-COMPILER JACKSON-CORE and COMPRESS.

The apparent synergy between inheritance and delegation could offer

an opportunity for source code quality predictive models. These models

could decide which metrics to focus on at different stages of development.

In this way, the models could rely on metrics that can best represent the

current state of the system under analysis, potentially improving their

predictive capabilities.

ø Key findings of RQ1.

In 7 out of the 12 analyzed projects, both implementation and specifi-

cation inheritance exhibited an “increasing-decreasing” trend, with

design erosion identified as the most probable cause for this pattern.

Usage patterns in other projects were less consistent and varied de-

pending on their specific scopes. Additionally, we observed that dele-

gation maintained an orthogonal relationship, showing an opposite

trend compared to both implementation and specification inheritance

in four of the systems analyzed. The findings from RQ1 could have

significant implications for predictive software quality analytics. Mod-

els within this field could be enhanced by incorporating the identified

usage trends, enabling more precise predictions about which metrics

are most effective at various stages of software development.
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Table 4.2: RQ2. Variables removed because of multi-collinearity.

Project Discarded Variables

Commons-Codec RFC, NOC

Commons Cli DIT, NOC, InhImp

Commons-Collections WMC

Commons-CSV RFC

Commons-Compress RFC

Gson RFC

Jackson-Core WMC, RFC, DIT, InhImp

Jackson-Databind RFC

Jackson-Dataformat-XML WMC, RFC, DIT

Commons-JxPath DIT

Joda-Time WMC, RFC, DIT

Closure-Compiler RFC

RQ2 - The Impact of Reusability Metrics on Defect-Proneness

In this sub-section, we report the results when studying the impact of

reusability metrics on the defect-proneness of source code.

M U LT I - C O L L I N E A R I T Y A N A LY S I S . Before discussing the results of the

statistical model, it is worth reporting the outcome of the multi-

collinearity analysis—which was performed to make sure that no cor-

related variables were employed within the statistical model and could

bias the interpretation of the results (see Section 4.2). Table 4.2 lists the

variables removed after the application of the correlation analysis. In the

first place, we found that RFC was the metric most often removed: in all

the cases, it was correlated with LOC and, therefore, we preferred keeping

LOC because of its highest degree of interpretability. Secondly, in three

projects, i.e., COMMONS-COLLECTIONS, JACKSON-CORE, and JODA-TIME,

the WMC metric was removed, again for its correlation with LOC. We also

discovered correlations between DIT and NOC in two projects such as
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COMMONS-CODEC and COMMONS-CLI: we kept NOC, namely the metric

reporting the number of immediate subclasses of a class. In the cases

of JACKSON-DATAFORMAT-XML and JODA-TIME, we found a correlation

between DIT and specification inheritance: as the latter was one of the

independent variables, we preferred keeping it. Finally, we identified cor-

relations between specification and implementation inheritance in the

projects COMMONS-CLI and JACKSON-CORE—these correlations could

be already hypothesized looking at the trends observed in the context of

RQ1: in these two cases, we were obliged to remove one of the indepen-

dent variables and decided to opt for implementation inheritance.

S TAT I S T I C A L M O D E L E X P L A N AT I O N . Table 4.3 illustrates the results of

the statistical models built in RQ2. The independent variables and con-

trol variables are reported on the rows, while the various considered

systems are reported on the columns—empty cells indicate that a cer-

tain variable was removed from the analysis of a specific system as a

consequence of the multicollinearity analysis, while the number of ob-

servations (the commits analyzed) for each project is reported in the

header of each column. The statistical codes report the p-value for each

variable and each project and were used to interpret the results obtained.

According to Table 4.3, a higher amount of ‘*’ implies a higher statistical

relevance of a variable with respect to decrease (↓) or increase (↑) of the

likelihood to affect the defect-proneness of source code.

S TAT I S T I C A L M O D E L A N A LY S I S . Looking at the table, various consider-

ations can be drawn. First and foremost, in 10 out of the total 12 projects

we found at least one of the inheritance metrics to be a statistically signif-

icant factor to explain the defect-proneness of the considered systems.

The NOC metric, in particular, is the one being relevant in more systems.

On 8 projects the metric was observed to explain both the increase and

decrease of defect-proneness.

To comprehend how the metric affects the phenomenon under analysis,

we analyzed the sign of the coefficients. The coefficients of a Multinomial

Log-Linear model relate to a reference category and indicate how the
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Table 4.3: RQ2. Results of the statistical model.
Com.-Codec N=2,134 Com.-Cli N=1,099 Com.-Col. N=3,560 Com.-CSV N=1,634 Comp. N=3,305 Gson N=1,478

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

DiffWMC
-10.098

(7.495)

2.280

(10.981)

-0.691

(3.434)

2.416

(3.602)

-3.539

(2.559)

0.627

(5.136)

-5.248∗∗∗

(0.033)

-1.903

(4.387)

3.261

(30.899)

-1.305

(25.907)

DiffNOC
-0.038

(0.050)

0.004

(0.013)

-4.413∗∗∗

(0.156)

1.052∗∗∗

(0.176)

10.188∗∗∗

(0.002)

-5.653∗∗∗

(0.051)

-0.159

(0.275)

1.536∗∗∗

(0.415)

DiffLCOM
0.092

(0.140)

0.054

(0.261)

0.166

(0.256)

-0.744∗∗∗

(0.244)

0.422

(0.808)

0.476

(22.615)

-0.056

(0.066)

-0.040

(0.130)

-0.066

(0.335)

0.046

(0.125)

0.013

(1.242)

-0.159

(1.157)

DiffDIT
11.927∗∗∗

(0.269)

−0.183∗∗∗

(0.033)

0.012

(5.830)

-0.0003

(0.023)

0.012

(5.830)

-0.0003

(0.023)

-4.526∗∗∗

(0.238)

0.661∗∗∗

(0.169)

12.511∗∗∗

(0.002)

-5.151∗∗∗

(0.125)

0.696

(0.466)

1.896∗∗

(0.798)

DiffCBO
-5.434

(5.898)

-9.729∗∗∗

(0.243

-0.645

(3.617)

-5.947

(3.821)

-0.878

(58.069)

-0.495∗∗∗

(0.103)

-0.994

(4.485)

-3.484

(8.728)

-4.163∗∗∗

0.021)

1.467

(2.717)

-17.977

(12.462)

-3.472

(12.553)

DiffRFC
4.123

(5.784)

-0.030

(1.106)

-0.014

(1.027)

4.123

(5.784)

1.013

(6.087)

1.924

(14.548)

DiffLOC
0.005

(0.302)

0.075

(0.346)

0.002

(0.139)

0.056

(0.200)

-0.611

(1.053)

-0.099

(11.153)

0.175

0.121)

0.045

(0.236)

0.149∗

(0.090)

0.024

(0.104)

0.115

(1.273)

0.689

(1.373)

DiffDelegations
0.058

(0.049)

-0.060

(0.077

0.017

(0.022)

0.001

(0.025

-0.069

(0.137)

0.004

(0.654)

0.031

(0.076)

-0.058

(0.147)

0.013

(0.017)

-0.003

(0.013)

0.068

(0.059)

-0.018

(0.078)

DiffSpecInh
-1.791

(1.685)

-1.510

(3.395

0.070

(0.618)

1.382∗∗∗

(0.542)

1.013

(6.087)

1.924

(14.548)

-0.571

(5.267)

-1.495

(10.178)

-0.187

(0.862)

-0.148

(0.637)

-0.356

(3.632)

0.226

(1.865)

DiffimpInh
-0.060

(0.940)

0.046

(2.134

0.767

(3.457)

0.771

(13.557)

-1.141

(2.923)

-0.094

(4.432)

-0.337

(0.488)

0.154

(0.383)

0.047

(2.105)

0.267

(1.713)

Churns
-0.002

(0.003)

-0.002

0.004)

-0.002

(0.002)

-0.005

(0.004)

-0.026

(0.038)

-0.100

(0.127)

-0.004

(0.007)

-0.009

(0.013)

-0.003

(0.002)

-0.0003

(0.001)

-0.015

(0.014)

-0.007

(0.009)

Constant
-4.762∗∗∗

(0.248)

-4.717∗∗∗

(0.246)

-3.472∗∗∗

(0.187)

-3.448∗∗∗

(0.187)

6.429∗∗∗

(0.536)

-6.230∗∗∗

(0.527)

4.605∗∗∗

(0.265)

4.520∗∗∗

0.264)

-4.236∗∗∗

(0.160)

-4.327∗∗∗

(0.159)

-4.910∗∗∗

(0.369)

-5.051∗∗∗

(0.372)

Jack.-Core N=1,543 Jack.-Datab. N=5,228 Jack.-XML N=1,128 Com.-JxPath N=598 Joda-Time N=2,094 Clo.-Compiler N=17,171

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

DiffWMC
-2.330

(1.546)

3.344∗∗

(1.619)

-14.452∗∗∗

(2.914)

41.577∗∗∗

(3.503)

-8.302∗∗∗

(0.006)

-3.841∗∗∗

(0.004)

DiffNOC
-37.085∗∗∗

(0.359)

-93.807∗∗∗

(0.372)

-58.836∗∗∗

(0.037)

-152.598∗∗∗

(0.043)

-0.066∗∗∗

(0.020)

-0.235∗∗∗

(0.007)

4.203∗∗∗

(0.113)

-1.798∗∗∗

(0.040)

-1.001∗∗∗

(0.007)

-0.723∗∗∗

(0.021)

0.617∗∗∗

(0.0003)

2.750∗∗∗

(0.0003)

DiffLCOM
-0.024

(0.029)

-0.008

(0.031)

0.155∗∗∗

(0.049)

0.179∗∗∗

(0.045)

-0.016

(0.244)

-0.420

(0.478)

0.217

(1.161)

-1.167

(1.509)

-0.835

(0.867)

-0.255

(2.234)

0.076

(0.086)

0.034

(0.069)

DiffDIT
-70.763∗∗∗

(0.028)

-124.104∗∗∗

(0.029)

0.391 ∗∗∗

(0.0003)

-0.665∗∗∗

(0.0002)

DiffCBO
-2.840

(5.329)

-8.386

(5.859)

1.062

(0.979)

2.261∗

(1.194)

-1.162

(3.528)

18.673∗

(10.142)

-11.521

(12.928)

-28.867∗∗∗

(9.482)

5.642∗∗∗

(0.319)

-7.746∗∗∗

(0.028)

-7.895∗∗∗

(0.003)

3.860∗∗∗

(0.002)

DiffRFC
8.152

(7.483)

-47.303∗∗∗

(8.690)

DiffLOC
-0.039

(0.053)

0.039

(0.047)

-0.045

(0.147)

-0.013

(0.141)

-0.009

(0.228)

0.077

(0.639)

-3.004∗

(1.736)

5.674∗∗∗

(1.428)

0.645

(0.699)

1.564

(2.364)

0.615∗∗∗

(0.153)

0.035

(0.116)

DiffDelegations
0.001

(0.003)

0.003

(0.003)

-0.005

(0.003)

-0.010∗∗∗

(0.003)

0.027

(0.043)

0.005

(0.066)

0.201∗

(0.104)

0.399∗∗∗

(0.100)

0.032

(0.051)

-0.074

(0.117)

-0.003

(0.002)

0.002

(0.002)

DiffSpecInh
-0.371

(0.439)

0.491

(0.407)

0.109

(0.095)

-0.065

(0.100)

-0.489

(2.984)

1.159

(5.170)

-4.686∗

(2.742)

0.161

(1.719)

-1.633

(3.875)

-6.170∗∗∗

(0.250)

0.002

(0.278)

-0.048

(0.268)

DiffimpInh
0.018

(0.099)

0.341∗∗∗

(0.090)

-0.461

(1.068)

-0.430

(2.108)

-2.314

(1.718)

-15.482∗∗∗

(4.800)

-1.313

(2.317)

1.200

(4.509)

0.133

(0.118)

-0.034

(0.096)

Churns
-0.001

(0.002)

-0.004

(0.004)

-0.001

(0.001)

-0.004∗∗

(0.002)

0.002

(0.006)

-8.872∗∗∗

(0.001)

-0.015∗

(0.008)

-0.026∗∗∗

(0.007)
-0.006(0.006)

-0.019

(0.013)

-0.001

(0.0004)

-0.00001

(0.0001)

Constant
-4.183∗∗∗

(0.237)

-4.082∗∗∗

(0.237)

-4.048∗∗∗

(0.118)

-4.043∗∗∗

(0.127)

-5.312∗∗∗

(0.440)

-5.346∗∗∗

(0.518)

-3.345∗∗∗

(0.262)

-3.323∗∗∗

(0.264)

-4.545∗∗∗

(0.243)

-4.462∗∗∗

(0.251)

-4.624∗∗∗

(0.081)

-4.654∗∗∗

(0.080)

Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

variables change the chances of the dependent variable being affected

with respect to the reference category—which was set to “stable” in our

case. As for the columns “↓” of Table 4.3, this means that a negative

coefficient for a variable X suggests that for one unit increase of X , the

chances that the defect-proneness of source code varies toward a de-

crease are estimated in the amount indicated by the coefficient, i. e.,

the higher the coefficient, the higher the chance that the variable con-

tributes to decreasing the defect-proneness of source code. A positive

coefficient implies that for one unit increase of X , the chances that the

defect-proneness of source code varies toward the stability are estimated

in the amount indicated by the coefficient, i. e., the higher the coefficient,

the higher the chance of defect-proneness being stable over time. Simi-

larly, in the case of the columns “↑”, a negative coefficient for X implies

that the chances that the defect-proneness of source code varies toward

the stability are estimated in the amount indicated by the coefficient,
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i. e., the higher the coefficient, the higher the chance of defect-proneness

being stable over time. A positive coefficient would instead indicate that

the chances of defect-proneness increasing are estimated in the amount

indicated by the coefficient, i. e., the higher the coefficient, the higher

the defect-proneness of the source code.

According to this interpretation, the signs of the coefficients for NOC

over the various projects did not report a common pattern. For example,

in COMMONS-COMPRESS (5th column, 1st row of Table 4.3) we observed

a positive coefficient of the variable for “↓” and a negative coefficient

for “↑”, meaning that the variable statistically influences the stability of

defect-proneness over time. On the contrary, on the CLOSURE-COMPILER

project (6th column, 2nd row of Table 4.3) the coefficients are positive

for both “↓” and “↑”, meaning that the variable tends to influence the

increase of defect-proneness, overall. As such, we could not delineate a

common behaviour for NOC. Likely, its impact depends on the peculiari-

ties of the development process in the different projects rather than on

more general aspects.

As for the independent variables considered in our study, namely inher-

itance and delegation, the discussion is similar. On the one hand, the

impact of these metrics is limited to a few projects, suggesting that the

defect-proneness of source code is only partially dependent on reusabil-

ity metrics. On the other hand, the coefficients of the metrics vary with-

out a common pattern. As an example, the coefficient for specifica-

tion inheritance was positive for “↑” in COMMONS-CLI and negative in

JODA-TIME. On the same line, implementation inheritance had a slightly

positive coefficient for “↑” in JACKSON-DATABIND, while a negative co-

efficient in JXPATH. As for the delegation, this turned to be statistically

relevant on just two projects, i.e., JACKSON-DATABIND and JXPATH with-

out a consistent sign. Hence, we could conclude that the reusability met-

rics themselves have a limited connection to defect-proneness. Other

indicators, like the structure of the hierarchies computed by NOC, seem

to have more statistical power. As such, it is not the amount of reusabil-

ity mechanisms used by developers to influence the defect-proneness
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of source code, but rather the way these mechanisms are used in the

specific cases. This result has two main implications. First, we could not

identify a drawback in the use of inheritance and delegation with respect

to software reliability: hence, the application of reusability mechanisms

is not per se something to avoid. However, this result represents a call to

researchers in software quality, who are required to devise novel quality

checkers and/or empirical investigations to monitor the way code reuse

is implemented and how it may negatively affect the defect-proneness

of source code.

Another valuable consideration can be drawn when considering the

control variables. According to our results, none of them seems to be

statistically impactful on defect-proneness. We believe this is a relevant

result for the software maintenance and evolution research community

as a whole. Code quality metrics have been indeed often used to estimate

and/or predict defects: our results indicate the lack of statistical signifi-

cance and possibly imply that the set of metrics considered within defect

prediction models should be reconsidered - in this sense, we corroborate

previous findings on the limited value of the Chidamber-Kemerer metric

suite for defect prediction [141, 161, 287] as well as further stimulate the

research on alternative predictors [45, 84, 269, 280].

ø Key findings of RQ2.

Our findings suggest that the use itself of inheritance and delegation

does not influence the defect-proneness of source code. Rather, the

specific adoption, e.g., how developers structure the hierarchy of the

systems being developed, tends to influence more the likelihood of

source code being defective. Furthermore, we found a limited con-

nection between code quality metrics and defect-proneness, possibly

revealing that previous research on the relation between metrics and

defects should be reconsidered.
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RQ3. On the impact of reusability mechanisms in code churns

Table 4.4 reports the results obtained when building a Generalized Linear

model on the data collected for RQ3. Differently from RQ2, the dependent

variable was the code churn, namely a numerical variable.

S TAT I S T I C A L M O D E L E X P L A N AT I O N . The statistical model outputs a

single coefficient for each independent variable: this coefficient corre-

sponds to the impact of a one-unit increase on the amount of code churn.

Also in this case, the statistically significant coefficients are highlighted

with a ‘*’ symbol - a higher amount of ‘*’ implies a higher statistical

relevance of a variable with respect to the code churn computed on

a defect-fixing commit i . The variables discarded through the multi-

collinearity are the same as RQ2.
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Table 4.4: RQ3. Results of the statistical model.
Com.-Codec N=2,134 Com.-Cli N=1,099 Com.-Col. N=3,560 Com.-CSV N=1,634 Comp. N=3,305 Gson N=1,478

DiffWMC
163.951

(105.295)

26.263

(227.457)

-20.375

(56.965)

-20.375

(56.965)

-1,988.919∗∗∗

(210.722)

-377.039

(269.203)

DiffNOC
10,213.080∗∗∗

(2,341.143)

-132.074

(1,357.614)

-10,740.970∗∗∗

(1,699.369)

17,827.570∗∗∗

(3,288.230)

DiffLCOM
1.383

(2.713)

-12.154

(16.169)

7.799∗

(4.680)

10.673∗∗∗

(1.905)

26.285∗∗∗

(6.021)

-15.488

(12.955)

DiffDIT
3,341.228∗∗∗

(903.732)

-2,378.489

(1,497.270)

-1,787.167

(1,192.199)

52,852.530∗∗∗

(2,813.141)

-6,958.231∗∗

(2,826.673)

DiffCBO
1,021.357∗∗∗

(150.161)

-108.063

(134.420)

6,717.225∗∗∗

(652.191)

-56.282

(94.958)

5,529.115∗∗∗

(307.003)

1,916.428∗∗∗

(145.944)

DiffRFC
192.611∗∗∗

(57.094)

4.682

(60.012)

DiffLOC
1.293

(2.158)

-9.992∗

(5.254)

-58.840∗∗∗

(10.760)

2.994

(2.693)

5.769

(5.471)

46.604∗∗∗

(10.894)

Delegation
0.017

(0.045)

-0.697∗∗∗

(0.229)

-0.003

(0.057)

0.165

(0.124)

-0.080∗∗∗

(0.022)

-0.119∗∗

(0.050)

SpecInh
-1.217

(3.145)

39.595∗∗∗

(11.915)

1.143

(1.211)

-6.889

(6.984)

-0.710

(1.950)

1.415

(1.301)

ImpInh
-0.131

(1.747)

-1.026

(0.870)

-0.386

(4.387)

3.653∗∗∗

(1.093)

2.080

(2.226)

BugDecrease
1.433

(37.641)

-74.159

(102.978)

-106.139

(620.995)

-1.272

(69.685)

-26.208

(85.330)

-6.128

(90.985)

BugIncrease
-20.191

(37.620)

-70.799

(101.593)

-111.854

(620.996)

-14.892

(69.652)

-15.856

(86.311)

-14.031

(96.408)

Constant
52.948∗∗∗

(15.918)

126.288∗∗

(51.413)

103.349

(77.155)

11.161

(20.003)

91.271∗∗∗

(25.693)

111.100∗

(63.054)

Jack.-Core N=1,543 Jack.-Datab. N=5,228 Jack.-XML N=1,128 Com.-JxPath N=598 Joda-Time N=2,094 Clo.-Compiler N=17,171

DiffWMC
853.627∗∗∗

(71.347)

-889.089

(1,208.343)

-35,485.190 ∗∗∗

(1,024.124)

DiffNOC
21,588.520∗∗∗

(1,212.595)

22,830.430∗∗∗

(1,564.318)

333.786

(509.649)

24,786.920∗∗∗

(5,760.288)

54,104.760∗∗∗

(3,864.815)

204,776.100∗∗∗

(25,377.820)

DiffLCOM
1.241

(0.765)

-28.862∗∗∗

(1.208)

-8.269∗∗∗

(0.992)

21.501∗∗∗

(5.505)

189.720∗∗∗

(23.536)

454.243∗∗∗

(9.841)

DiffDIT
50,782.460∗∗∗

(1,712.723)

305,846.900∗∗∗

(27,225.780)

DiffCBO
1,682.687∗∗∗

(131.899)

3,147.449∗∗∗

(74.440)

239.229∗∗∗

(19.892)

3,504.462∗∗∗

(363.997)

-31,929.670∗∗∗

(2,814.595)

-472.842

(643.145)

DiffRFC
1,358.532∗∗∗

(363.735)

DiffLOC
28.585∗∗∗

(1.371)

-8.353∗∗∗

(3.029)

8.568∗∗∗

(0.946)

-158.255∗∗∗

(12.875)

344.715∗∗∗

(42.978)

1,028.922∗∗∗

(38.580)

Delegation
-0.012

(0.017)

0.010∗

(0.006)

-0.096∗∗

(0.044)

-0.598∗∗

(0.294)

-0.580∗∗∗

(0.107)

-0.014∗

(0.008)

SpecInh
2.701

(3.677)

-1.281∗∗∗

(0.305)

-2.847

(2.324)

6.773

(14.133)

-156.445∗∗∗

(22.026)

0.868

(0.737)

ImpInh
-0.140

(0.499)

3.001∗∗

(1.408)

0.942

(3.559)

179.745∗∗∗

(20.294)

0.406

(0.407)

BugDecrease
83.885∗

(48.156)

28.236

(19.492)

19.831

(23.738)

-41.147

(149.800)

-625.949

(602.612)

-73.094

(91.940)

BugIncrease
-51.820

(48.181)

-7.043

(20.359)

-20.624

(26.005)

14.086

(149.626)

-690.321

(618.444)

-52.403

(91.954)

Constant
25.537

(47.505)

182.664∗∗∗

(57.987)

57.931∗∗∗

(9.413)

1,561.449∗∗∗

(387.616)

-6,729.363∗∗∗

(706.442)

89.824

(76.824)

Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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S TAT I S T I C A L M O D E L A N A LY S I S . Looking at the Table 4.4, we can draw

various conclusions. As expected, the LOC metric was found to be sta-

tistically significant in 9 systems out of 12. The coefficients are also rela-

tively high in all cases, meaning that larger classes are typically harder

to maintain - in this respect, we could corroborate previous findings

in literature [140, 318]. The CBO metric, which computes the coupling

between objects, was also statistically significant in nine projects, con-

firming that developers spend more effort in fixing defects pertaining

to highly-coupled classes [188]. Other code quality metrics were not

statistically significant. So, in conclusion of this first point of discussion,

we could report that, besides LOC and CBO, the role of code metrics to

estimate the maintenance effort seems to be limited. Once again, this

finding is of the interest of the software maintenance and evolution re-

search community, which might be called to define novel metrics and/or

instruments to monitor maintenance effort over time.

Turning the focus on our independent variables, we could find similar

conclusions as in RQ2 when considering inheritance. Both specification

and implementation inheritance were indeed most not statistically sig-

nificant, with some exceptions. The former was relevant for the projects

COMMONS-CLI, JACKSON-DABIND, and JODA-TIME. However, the sign

of the coefficients revealed that the metric was statistically related to

the increase of code churn only in the case of COMMONS-CLI. By ana-

lyzing this case further and relating the statistical result with the trend

analysis conducted in RQ1, we could better understand the reason be-

hind this correlation. Most of the defects available for COMMONS-CLI

were introduced and fixed after the design erosion discussed in RQ1. It is

therefore reasonable to believe that it was the lack or the decrease in the

use of inheritance mechanisms which caused a higher maintenance ef-

fort when fixing defects. This interpretation is in line with what observed

on the other systems, i.e., JACKSON-DABIND and JODA-TIME, where the

specification inheritance was negatively correlated to maintenance ef-

fort, meaning that this was a significant factor to reduce the code churn

required to fix defects.
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Implementation inheritance was found to be statistically relevant in just

two cases, i.e., on JACKSON-DATABIND and JXPATH. While in the former

case the coefficient was close to zero—indicating little to no correlation

to the dependent variable—, it was of -15.482 in the second case. Hence,

also in this case we could conclude that this metric was negatively cor-

related to the maintenance effort. Enlarging the discussion to the other

inheritance metrics subject of the study, namely NOC and DIT, we could

discover similar results as RQ2. Both NOC and DIT were positively cor-

related to the dependent variable and the coefficients were relatively

large in all cases: these results imply that the structure of hierarchies

might strongly influence the maintenance effort to fix defects, hence

corroborating the results obtained in our previous research question,

other than the results of empirical studies reporting how NOC and DIT

could worsen software maintainability [77, 78, 282].

As for delegation, the coefficients were mostly negative, even if relatively

small. Hence, we could conclude that there exist a small negative corre-

lation between the metric and maintenance effort, which implies that

the use of delegation may decrease the overall amount of code churn

required to fix defects.

ø Key findings of RQ3.

Reusability metrics mostly reduce the effort required to fix defects, as

measure by code churn. Also in this case, we found that the structure of

the hierarchies might affect more maintenance effort than the mere use

of inheritance. Finally, the lines of code and coupling between classes

represent factors that strongly influence the maintenance effort.

4.4 T H R E AT S T O VA L I D I T Y

A number of potential threats might have biased the study. This section

discusses them and reports the mitigation strategies applied.
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T H R E AT S T O C O N S T R U C T VA L I D I T Y. Threats in this category refer to a

possible mismatch between theory and observation. In this respect, the

selection of the dataset represents a crucial point for which there are

various observations and remarks to make. We used DEFECTS4J (version

2.0.0), which has been already widely used by the research community

in several previous studies (e.g., [157, 277, 321]) and that reduced pos-

sible bias due to the presence of uncontrolled conditions, e. g., tangled

changes [148], allowing us to investigate the impact of reuse mechanisms

on defect-proneness and maintenance effort more precisely.

As for the defects considered, the GIT repositories of the considered

projects may contain more issues than those reported in DEFECTS4J.

Nevertheless, there are two observations to make in this respect. i), a

notable amount of these issues do not actually pertain to defects but

to other maintenance and evolution tasks. For instance, let us consider

the case of the COMMONS-COLLECTIONS project, i.e., the project hav-

ing the least amount of defects in our study. According to the issue

tracker,5 the project has a total of 787 issues (filtering by Type=‘All’ and

Status=‘All’): of those, only 374 pertain to defects (filtering by Type=‘Bug’

and Status=‘All’), while the remaining 413 issues refer to enhancements,

implementation of new features, and other evolutionary tasks. As such,

the set of candidate defects that we might have considered is much lower

in size with respect to the raw data reported on the issue trackers. ii)

A number of issues do not report reliable information. Still taking the

COMMONS-COLLECTIONS project as an example, we noticed that 159

of the issues marked as ‘Closed’ or ‘Resolved’ (filtering by Type=‘Bug’

and Status=‘Resolved, Closed’) report the strings “Invalid”, “Not a Bug”,

“Won’t Fix”, “Cannot Reproduce”, and “Duplicate” as actual resolution,

hence indicating that these defects were false positives, not taken into ac-

count by the developers, or already addressed as part of duplicated issue

reports. As a conclusion, we found out that issue trackers contain a non-

5The COMMONS-COLLECTIONS issue tracker: https://issues.apache.org/jira/p
rojects/COLLECTIONS/issues/.

https://issues.apache.org/jira/projects/COLLECTIONS/issues/
https://issues.apache.org/jira/projects/COLLECTIONS/issues/
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negligible amount of noise that would require substantial filtering and

data quality procedures, which is indeed what DEFECTS4J guarantees.

Still reasoning on the number of issues reported on the issue trackers of

the considered systems, it is worth remarking that the candidate set of de-

fects was limited by the types of defects and the types of fixes performed.

We should distinguish multiple cases. First, some defects may not pertain

to production code, e.g., test code defects, or might relate to the update

of third-party libraries or configuration files. As explained in Section 4.2,

these defects were not considered by DEFECTS4J and, as a consequence,

by our work. However, these defects would have not created any noise

for our analysis: indeed, our work aims at understanding how reusability

metrics affect the defect proneness of the production code and, for this

reason, all the defects that are not related to production code cannot

affect our measurements. Second, some defects might not be verifiable

or not traceable, even though they relate to the production code. As for

the former, they might either represent true defects that developers did

not have enough time to deal with or false positives, namely defects that

developers ignored and that were marked as ‘Resolved’ or left opened in

the issue tracker without any further action: considering these defects in

our analysis would have caused some degree of uncertainty in terms of

number of defects considered and, for this reason, we would have likely

introduced some bias. As for the latter, these are defects that we could

not trace back in the history of the considered projects and, as such,

we could not technically analyze without approximation or heuristics

that would have, again, introduced some degree of uncertainty. Last

but not least, the candidate set of defects might have been limited by

the types of fixing activities: DEFECTS4J indeed discards defects whose

fixes were performed along with other maintenance and evolution ac-

tivities, e.g., tangled changes. Among the various cases discussed, this

latter was the most critical in our case, as it refers to real defects that

were not considered in the scope of the analysis and that might have

biased the computation of the number of defects in the change history

of the projects considered. A systematic assessment of the noise caused
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by these missing defects would have required the definition of dedicated

data quality protocols through which we could have (I) systematically

classified real defects among those not considered by DEFECTS4J; (II)

analyzed the corresponding fixes to understand their nature; and (III)

assessed the extent to which our findings varied when considering the

newly classified defects. To the best of our knowledge, the current lit-

erature does not offer any (semi-)automated instrument to perform a

similar assessment nor guidelines to follow. We deemed the research

investigation and methods required to perform such a systematic as-

sessment as out of scope. Nonetheless, to partially analyze the potential

noise given by those missing defects, we have attempted to estimate

the noise of our analysis in the case of the COMMONS-COLLECTIONS

project through a simple, likely suboptimal approach based on text min-

ing and manual analysis. We first (i) mined the summary of each of

the 215 marked as ‘Closed’ or ‘Resolved’ defects having as resolution

the string “Fixed”, and (ii) used a keyword-based approach to classify

those issues according to their type. More specifically, we classified an

issue as ‘test-related’ if the summary contained the keyword “test”, as

‘documentation-related’ if it contained keywords such as “JavaDoc” and

“comment”, and as ‘configuration-related’ if it contained keywords such

as “JDK”, “compil*”, “build”, and “CI”. In this way, we could estimate the

amount of issues whose fixes did not modify the production code, hence

covering the first case described above. Afterwards, we manually went

through the summaries of the remaining issues to assess how many of

them revolved around modifications that were not verifiable, not trace-

able, or that performed modifications other than defect fixes—hence

covering the other possible cases of noise. As a result, we discovered

that 181 issues were not considered within DEFECTS4J. Among them,

1% referred to Continuous Integration concerns, 7% to JDK compilation

issues, 13% to test code defects, e.g., flaky tests, and 17% to documen-

tation issues, e.g., unclear JavaDoc comments. Hence, 69 of them (38%)

of the discarded defects did not concern production code. From the

subsequent manual analysis, we discovered that 21 were untraceable
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(19%), while 84 were issues raised by specific users that the maintainers

of the system solved by recommending configuration changes, hence

not making any change to the system itself (46%). The remaining 7 de-

fects were not correctly classified by the keyword-based approach and

pertaining to documentation or configuration issues - in these cases,

the summaries reported keywords different from those used by the clas-

sifier, e.g., “typo”. Perhaps more interestingly, we found that 34 defects

matched the requirements of DEFECTS4J: yet, six were reported between

November 2020 and June 2023, namely after the release of DEFECTS4J

2.0.0 (issued on September 15, 2020), while 24 were part of the defects

deprecated by DEFECTS4J. As such, the set of defects actually analyzable

was four, which is exactly the number of defects we analyzed. While such

an additional analysis was not performed on all the considered systems,

it let us provide some insights on the noise possibly affecting our results.

While we acknowledge that our study took into account only a subset

of defects having specific properties, it actually contains most of the

real defects that should be taken into account. The noise caused by the

presence of additional issues on the issue trackers is likely to be limited,

as most defects and corresponding fixes are not related to production

code. In conclusion, we argue that our conservative approach in terms

of defect selection, i.e., that of relying on the defects pointed out by DE-

FECTS4J, represents the best option to properly measure the extent to

which reusability mechanisms impact the defect proneness of source

code. As a side result of our additional analysis, we could also further

corroborate the validity of DEFECTS4J - which we consider as a valuable

outcome for our research community.

A second threat to validity relates to the selection of the metric used to

operationalize maintenance effort. We used code churn [251]: we are

aware that this metric can only proxy the actual effort spent when main-

taining source code, yet this choice is required in our case because of the

unavailability of precise data regarding the maintenance effort in our

dataset. Nonetheless, proxy measurements are still used and considered

in the field[313]. The tool we used to extract metrics, e. g., reusability
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or CK metrics, represents another potential threat to validity. We used

tools already validated and used by the research community [118, 327].

Finally, as mentioned in Section 4.2, in DEFECTS4J a single bug can be in-

troduced by multiple factors, but its resolution will always occur within

a JAVA file. Thus, to avoid possible threats to contraction validity, we

discard commits that introduced defects caused by issues not involving

source code. This allowed us to only focus on defects introduced and

resolved through changes to the source files.

T H R E AT S T O I N T E R N A L VA L I D I T Y. These threats refer to factors that

might have impacted the study results. In our context, these might be

connected to the selection of the metrics used to build the statistical

models. On the one hand, we were interested in understanding the role

of reusability metrics and, for this reason, we operationalized implemen-

tation and specification inheritance, other than delegation, following

their exact definition. On the other hand, we used control variables pre-

viously shown to be significantly correlated to source code quality [67,

78, 332, 334]. Through these actions, we could rely on a set of indepen-

dent variables and control metrics that come from either our working

hypotheses or the state of the art.

T H R E AT S T O C O N C L U S I O N VA L I D I T Y. Threats related to this category

refer to the selection and the use of the statistical test. When addressing

RQ2 we modeled the problem using a Multinomial Logistic Linear model

[340], while we built a Generalized Linear model [95] in the context of

RQ3. These choices come from the nature of our response variables, i. e.,

multiclass and continuous, respectively. Moreover, the research com-

munity used these types of model in similar contexts [57, 118, 182]. The

empirical analysis conducted in this study had a quantitative connota-

tion and, in particular, we sought to understand the relation between

code reusability and defects through statistical modeling. Nonetheless,

we are aware that more qualitative investigations aiming at linking the

root cause of defects with the reuse mechanisms might potentially reveal

further insights into the matter. While a more complete overview of this

type is part of our future research agenda, in the context of this work we
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already provided some preliminary insights through the manual analysis

discussed. Such an analysis was in line with the statistical conclusions

drawn when addressing RQ2 and RQ3.

T H R E AT S T O E X T E R N A L VA L I D I T Y. As for the generalizability of the re-

sults, the main threat might be connected to the target of our work. In

particular, we focused on 12 JAVA projects having more than 44,900 com-

mits and coming from the DEFECTS4J dataset. As such, our work was

based on the analyses conducted on a sample: our generalization strat-

egy can be identified within the sample-based generalization strategies

proposed by Wieringa and Daneva [373]. In particular, among those

strategies, the “statistical learning” seems to be the most appropriate.

Wieringa and Daneva [373] reported that the “descriptions of statistical

sample phenomena can be used to predict similar phenomena in new

samples. [...]. The goal is not to generalize to a population, but to gen-

eralize to the next few cases”. This strategy is basically in line with the

generalizing by similarity principle described by Ghaisas et al. [114].

When contextualizing those strategies in our case, it is likely that simi-

lar results might be obtained in projects having similar characteristics

with respect to those analyzed in our work (see Table 4.1). Therefore,

we cannot claim the generalizability of our findings to projects having

different properties or even written in different programming languages.

Replications in these contexts would still be desirable and already part

of our future research agenda.
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T H E Y I N A N D Y A N G O F S O F T W A R E Q U A L I T Y : O N T H E

R E L A T I O N S H I P B E T W E E N D E S I G N P A T T E R N S A N D

C O D E S M E L L S

5.1 I N T R O D U C T I O N

The idea of design patterns was proposed in 1995 by the Gang of Four,

who defined them as reusable solutions to commonly occurring prob-

lems that arise during the design and development of software applica-

tions [107]. Adopting such reusability mechanisms can provide several

advantages from the developers’ perspectives, as their flexibility makes

them re-appliable by changing the context, the environment, and the pro-

gramming languages, without changing the philosophy driving a given

pattern [361]. The large spread of Object Oriented programming languages

boosted developers to reuse instance classes and to create hierarchies

that can be easily used as a basis for the introduction of design patterns.

Previous studies investigated the use of design patterns in JAVA [46, 133,

312], mainly because (I) JAVA offers, by design, mechanisms and data

structures that make large use of reusability principles, especially linked

to inheritance, and (II) although the fluctuating trends, JAVA is still one

the most adopted programming languages in large companies and open-

source communities.1 While most research emphasize the importance

of reusability mechanisms to guarantee high quality of the software, a

number of studies seem to go in the opposite direction, highlighting that a

sub-optimal implementation of design patterns can, in turn, increase the

code complexity and negatively impact the code in terms of maintainabil-

ity and comprehension [173]. Fowler and Beck identified code smells as

1Source: https://www.tiobe.com/tiobe-index/
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indicators of the poor quality of code, affecting its cohesion, coupling, and

comprehensibility, ultimately making the code difficult to maintain [105].

In this chapter, we investigate the role that design patterns play in the

presence of code smells.

We analyzed 15 open-source JAVA projects spanning over 542 releases,

by extracting information about the instances of design patterns and the

code smells affecting the classes, and assessing (I) the co-occurrences of

instances of design patterns and code smells, and (II) whether the presence

of design patterns instances is correlated with the formation of code smells.

We find that, although design patterns are intended to improve the qual-

ity of the code, as they represent a reuse mechanism, there is no guarantee

on them enhancing the goodness of the software; on the contrary, design

patterns can in fact determine the appearance of code smells in certain

cases. We point out the importance of carefully dealing with design pat-

terns by applying them properly and monitoring their evolution in the

software projects.

Our main points of contribution can be summarized as follows:

1. An empirical investigation of design patterns and their impact on

code smells, that can enhance the state of the art on software

reusability and, at the same time, can aid practitioners in monitoring

the changes in complexity and comprehension when implementing

design patterns;

2. A publicly available online appendix containing all the scripts, raw

data, and additional materials used to perform our experiments, that

can be leveraged for replication and verification of our work [412].

5.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The goal of this study was to understand whether and how design pat-

terns are related with code smells. The context consisted in 10 design pat-

terns, i.e., Adapter/Command, Bridge, Singleton, Template Method, Proxy,

State/Strategy, Decorator, Factory Method, Component, and Observer. The
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Figure 5.1: Overview of the research method applied in this work.

perspective was of both researchers and practitioners, as the former are

interested in increasing the body of knowledge on this topic, and the latter

are concerned about understanding how design patterns impact code

quality in software systems.

Based on our goal, we formulated two research questions.

Û RQ1. What are the co-occurrences in terms of classes between design

patterns and code smells?

RQ1 aimed at comprehending the fluctuations in the frequency of classes

participating in a particular design pattern, and the co-occurrence of code

smells in such classes. We wanted to assess whether classes implementing

design patterns contain code smells themselves, and we expected to see a

low frequency of smells in classes participating in design patterns.

We were interested in understanding whether and how design patterns

are correlated with the presence of code smells.

For this reason, we asked:

Û RQ2. To what extent does the presence of design patterns affect code

smells?
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To answer our research questions, we performed an empirical study

(I) analyzing the co-occurrences of code smells in classes participating

in design patterns, and (II) applying statistical models to understand the

impact of design patterns on the emerging of code smells.

Figure 6.1 depicts the method applied in this work, which we designed

following the guidelines by Wohlin et al. [376] and the ACM/SIGSOFT Em-

pirical Standards;2 in particular, we leveraged the “General Standard”,

“Data Science”, and “Repository Mining” guidelines. We selected 15 JAVA

projects from GITHUB and manually built 542 releases. Then, we extracted

design patterns instances in the projects by leveraging the detection tool

proposed by Tsantalis et al. [346], and we identified code smells affecting

the projects by running DECOR [244] on each release. We combined these

pieces of information to understand, on the one hand, the co-occurrences

of classes that collaborate into design patterns and, simultaneously, are

involved in some code smell. On the other hand, we investigated whether

design patterns affect code smells from a statistical standpoint.

In the following, we report the detailed design of our work. The complete

dataset, scripts, and raw results of our study are available in the online

appendix of this thesis [412].

Dataset Collection

Table 5.1: Overview of the projects analyzed.
Project Name Description Stars Forks N. Releases N. Releases Analyzed LOC Link

Arthas Java Diagnostic Tool 31,9k 6,9k 47 43 61K – 46K https://github.com/alibaba/arthas

Apollo Configuration Management System for Microservices 27,8k 10,1k 38 8 88K – 90K https://github.com/apolloconfig/apollo

Caffeine High Performance Caching Library 13,2k 1,4k 65 9 70K – 83K https://github.com/ben-manes/caffeine

Data Transfer Project Transfer Data Online 3,4k 442 55 47 40K – 41K https://github.com/google/data-transfer-project

ApkTool Reverse Engineering 15,8k 3,3K 16 14 15K – 18K https://github.com/iBotPeaches/Apktool

JSQL Parser RDBMS agnostic SQL 4,2k 1,2K 30 4 50K – 55k https://github.com/JSQLParser/JSqlParser

Disruptor High Performance Inter-Thread Messaging Library 15,8k 3,8K 13 6 20K – 20K https://github.com/LMAX-Exchange/disruptor

Mockito Framework for Unit Tests 13,7k 2,4K 198 112 89K – 88K https://github.com/mockito/mockito

MyBatis-3 SQL mapper framework for Java 18,2k 12,1K 39 13 100K – 98K https://github.com/mybatis/mybatis-3

Eureka AWS Service Registry 11,7k 3,7K 146 109 50K – 53K https://github.com/Netflix/eureka

Hystrix Latency and Fault Tolerance Library 23,2k 4,7K 79 40 75K – 48K https://github.com/Netflix/Hystrix

Zuul Gateway Service 12,5k 2,3K 5 4 35K – 31K https://github.com/Netflix/zuul

RxJava Library for Composing Asynchronous and Event-Based Programs for Java-VM 46,8k 7,7K 231 101 41K – 42K https://github.com/ReactiveX/RxJava

Jadx Dex to Java Decompiler 33,6k 4,2K 27 19 118K – 70K https://github.com/skylot/jadx

Spring Data JPA Data Access Layer Simplify 2,6k 1,2K 78 13 45K – 44K https://github.com/spring-projects/spring-data-jpa

Table 5.1 provides an overview of the dataset used in this work. We

defined two main criteria for the selection of the projects to consider:

2Available at: https://github.com/acmsigsoft/EmpiricalStandards

https://github.com/alibaba/arthas
https://github.com/apolloconfig/apollo
https://github.com/ben-manes/caffeine
https://github.com/google/data-transfer-project
https://github.com/iBotPeaches/Apktool
https://github.com/JSQLParser/JSqlParser
https://github.com/LMAX-Exchange/disruptor
https://github.com/mockito/mockito
https://github.com/mybatis/mybatis-3
https://github.com/Netflix/eureka
https://github.com/Netflix/Hystrix
https://github.com/Netflix/zuul
https://github.com/ReactiveX/RxJava
https://github.com/skylot/jadx
https://github.com/spring-projects/spring-data-jpa
https://github.com/acmsigsoft/EmpiricalStandards
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B U I L D AVA I L A B I L I T Y. We selected only JAVA projects that can be built

without errors. This criterion is driven by the constraints dictated by the

design pattern detection tool by Tsantalis et al. [346], which we selected

to obtain data on the design patterns implemented in the projects. The

tool requires that target projects build without errors, as it leverages JAVA

BYTECODE to generate an intermediate code representation. Thus, it can

only be executed on projects that can be built successfully. To ensure

that, we manually compiled the candidate projects and assessed their

compliance with this criterion.

N U M B E R O F S TA R S O N G I T H U B . We selected projects with a minimum

number of stars of 2K on GitHub. We set such a threshold to avoid the

inclusion of toy projects or personal projects developed by users. The

number of stars has been demonstrated to be a good proxy metric to

estimate the popularity of repositories and their overall quality [291].

Considering the points above, we manually identified GitHub projects

meeting the criteria. Due to the time-consuming activity, we limited our

search to the first 10 pages of GITHUB results filtered to JAVA, finding 45

candidate projects. Starting from the initial set of candidates, the first

and second authors manually set up the projects leveraging the build

system and directions provided in the corresponding GITHUB repository.

However, 50% of the projects could not be successfully configured and

built, due to incompatibility problems with the versions of some libraries.

This issue is not uncommon in the context of mining software reposito-

ries, and was pointed out by Hassan et al. [138] when they performed a

comparison among the main JAVA building systems. After filtering out

the projects which could not be built, we were left with 23 candidates.

To avoid considering projects irrelevant to our research questions, we

ran the design pattern detection tool [346] and discarded projects con-

taining no instances of design patterns. At the end of this process, we

had identified 15 JAVA meeting the selection criteria and useful to our

experiments, reported in Table 5.1.
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Design Pattern Extraction

To extract the design pattern instances implemented in the considered

projects, we leveraged the tool by Tsantalis et al. [346], which we selected

on the basis of two main aspects:

D E T E C T I O N C O N F I D E N C E . The tool can detect 10 kinds of design pat-

terns, i. e., Adapter/Command, Bridge, Singleton, Template Method, Proxy,

State/Strategy, Decorator, Factory Method, Component, and Observer,

with 100% precision and no false positives [346]. These performances

make the tool state-of-the-art for the task of design pattern instance

detection. However, due to the identical UML structure of Adapter/Com-

mand and State/Strategy, the tool aggregates them into a single type, as

they cannot be distinguished by an automated process [346].

F L E X I B I L I T Y TA K E N I N T O A C C O U N T. Due to the internal implementa-

tion of the tool, it can also identify custom implementation of known

design patterns types.

To perform its task, the tool executes a number of steps. First, it analyzes

the characteristics of the projects in terms of associations, generaliza-

tions, method invocations, and so on. At the end of this step, an n x n

adjacency matrix is generated, where n represents the number of classes.

The tool identifies the inheritance hierarchies among the classes, con-

sidering all kinds of inheritance implemented in JAVA, i. e., specification

inheritance, implementation inheritance, and abstract classes, and lever-

ages them to build a tree modelling the hierarchical structure of the

project. Such a tree generates one or more subsystems, which are then

provided as input to a similarity score algorithm. The algorithm com-

pares the identified subsystems with the structure of design patterns.

Code Smell Detection

To detect the code smells affecting the considered projects, we used

DECOR [244], as previously done in similar work [81, 136, 156] because it
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represents a compromise between execution time and performance [34,

244, 274], reporting 100% recall, and precision greater than 50%.

In particular, DECOR employs a combination of multiple heuristic ap-

proaches to detect code smells in source code. Given a class A, the tool

considers A to be affected by a code smell S if and only if for each metric

used to estimate the presence of S, the following condition is verified:

metr i ci ≥ thr eshol di . The higher the difference between metr i ci and

thr eshol di , the greater the intensity of S.

We leveraged DECOR to detect three smells, i. e., Complex Class, God

Class, and Spaghetti Code, as they represent the quality of the code in

terms of understandability.

RQ1: Analyzing the Co-Occurrences of Design Patterns and Code Smells

To answer RQ1, we calculated the frequency of classes participating in

design patterns and, simultaneously, being affected by code smells. We

merged the data coming from the execution of the design pattern detec-

tion tool by Tsantalis et al. [346] and the code smell detector DECOR. We

computed the number of classes that are involved in some design pattern

and, at the same time, are affected by code smells. We normalized all the

results using MIN-MAX in the range [0;1], and plotted the frequency of

co-occurrences by means of heatmaps.

RQ2: Correlation between Design Patterns and Code Smells

To address RQ2, we built a statistical model analyzing the impact that the

presence of a design pattern has on the emerging of code smells. In the

following, we report the independent, dependent, and control variables

involved in the analysis with the statistical model.

I N D E P E N D E N T VA R I A B L E S . We were interested in understanding

whether and to what extent the presence of design patterns impacts code

smells. For this reason, we considered design patterns as independent
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variables. We focused on 10 design patterns, i. e., Adapter/Command,

Bridge, Singleton, Template Method, Proxy, State/Strategy, Decorator, Fac-

tory Method, Component, and Observer. The selection of such set of

design patterns was driven by their availability, as they can be extracted

by the design pattern detection tool by Tsantalis et al. [346]. To avoid pos-

sible threats to validity, we considered the same aggregation on design

patterns made by the authors of the tool; as the patterns Adapter/Com-

mand and State/Strategy share the same UML structure, it is not possible

to automatically distinguish them by means of a tool.

D E P E N D E N T VA R I A B L E S . As we aimed to understand the impact of de-

sign patterns on the emergence of code smells, the presence of code

smells affecting the code represented the dependent variable in our

study. We focused on three code smells [105], i. e., (I) God Class, affecting

a class that implements several responsibilities, and it is invoked by most

of the system to perform their actions, (II) Spaghetti Code, representing a

class that implements long methods without parameters, and (III) Com-

plex Class, that is a class being hard to understand and showing a high

level of cyclomatic complexity. The principal reason driving the selection

of such smells is given by the claims made in previous studies about

them being representative of code complexity and comprehensibility,

which are perceived as crucial for maintenance tasks in the perspective

of developers [8, 9, 173, 264]. Likewise, we decided not to consider ad-

ditional known code smells, such as Parallel Inheritance, Middle Man,

or Refused Bequest due to issues in the detection mechanisms. They

have been formerly identified leveraging a custom version of DECOR that

implements a dynamic approach for the detection [202]. Unfortunately,

this version is not publicly available.

C O N T R O L VA R I A B L E S . Conscious that external unconsidered factors

can impact the fluctuation of the dependent variable, we considered a

set of code quality metrics as control variables for our experiment, to

avoid possible threats to the conclusion validity of our study. We selected

five control metrics, i. e., Lines of Code (LOC), Lack of Cohesion of Meth-

ods (LCOM), Number Of Attributes (NOA), Weighted Methods per Class
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(WMC), and McCabe’s Cyclomatic Complexity (CC); these metrics have

been demonstrated to be good estimators for code quality [332, 334]. We

extracted the control metrics by using DECOR; however, we remark that

DECOR does not consider such variables during the estimation of the

presence of code smells, which means that there is no direct correlation

between the dependent and control variables of our study [14].

We manually assessed the possibility of multi-collinearity among the

variables involved in our study, to avoid threats to the validity of our

work, as explained in the following.

S TAT I S T I C A L M O D E L . Given the nature of the dependent variable, i. e.,

the presence or the absence of a certain code smell, the Generalized-

Linear-Model was used [339]. We selected this statistical model because

it can be applied to estimate nominal variables that can assume two

levels. We built the model using the multinom function provided by the

nnet3 package in R. Before running the statistical model, we took into

account the multi-collinearity problem, occurring when two or more

independent variables are bounded with a high level of correlation, and

one of them can be used to predict the other. The presence of multi-

collinearity among variables can bias the results, therefore, we followed

the guidelines proposed by Allison et al. [12] to mitigate this threat. We

did not remove any independent variable, because the standard error

was, in any case, lower than 0.9, and interpretability problems arise with a

standard error higher than 2.5 considering 95% prediction interval [232].

5.3 A N A LY S I S O F T H E R E S U LT S

In this section we report the results of our study and discuss about the

implications of our findings.

3https://cran.r-project.org/web/packages/nnet/nnet.pdf

https://cran.r- project.org/web/packages/nnet/nnet.pdf
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Figure 5.2: Co-occurrences of code smells and design patterns.

RQ1. On the Co-occurrence of Design Patterns and Code Smells

RQ1 focused on comprehending whether and to what extent design pat-

terns and code smells co-occur in the same classes.

Figure 5.2 provides an overview of the results obtained from the co-

occurrences analysis. We report the data related to four projects, and we

make the complete results available in the online appendix [412]. The fig-

ure depicts a heatmap reporting the extent to which classes participating

in design patterns contained code smells. For example, in the MYBATIS-3

project, 7.69% of the classes participating in an instance of Adapter/Com-

mand were affected by the God Class smell.

The results obtained from the 15 analyzed projects were variegated, hint-

ing at the observation that the co-occurrence of design patterns and code

smells may vary depending on the project. By analyzing the frequencies

reported in each heatmap, we noticed that two main patterns emerged, de-

scribing two families of projects. The first kind of project was characterized

by design pattern instances completely free from code smells. That was

the case of projects APOLLO, APKTOOL, DATA TRANSFER PROJECT, JSQL

PARSER, DISRUPTOR, MOCKITO, and SPRING DATA JPA. In these projects,

none of the classes participating in design patterns were affected by code

smells. The opposite pattern arose from a set of seven projects which pre-

sented a high frequency of co-occurrence of design patterns and code

smells, i.e., HYSTRIX, CAFFEINE, MYBATIS-3, EUREKA, RXJAVA, JADX and
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ZUUL. Such projects exhibited code smells affecting classes participating

in design patterns, and in each project the threatened types of design pat-

terns went from two to four. A single project, i.e., ARTHAS, presented only

one co-occurrence, in fact the State/Strategy pattern was the sole affected

by the God Class and Spaghetti Code smells.

An interesting observation emerged from the analysis of co-occurrence,

which showed that the State/Strategy pattern was touched by code smells

in every project—except those not presenting any co-occurrence. In par-

ticular, in all the projects revealing at least or exactly one co-occurrence,

classes implementing the State/Strategy pattern were affected by the God

Class smell, in eight projects they also showed Spaghetti Code issues, and

in four projects they presented Complex Class smells. We conjecture that

this result is driven by the characteristics of the State/Strategy pattern itself,

as its goal is to provide different behaviors depending on the current state

of an object [107]. We suppose that as the behaviors to implement grow

in number and size, the complexity of the involved classes also tends to

increase. This observation remarks the non-triviality of the use of design

patterns to enhance code quality and maintainability; as design patterns

themselves risk being affected by the problems they aim at avoiding. The

Adapter/Command pattern showed a similar trend to the State/Strategy

one, as it was threatened by God Class and Spaghetti Code in five of nine

projects, and by Complex Class in two projects. We observed that instances

of the Singleton and Bridge patterns appeared in co-occurrence with code

smells in four projects, followed by the Template Method, which emerged

in three projects. Classes implementing the Observer and Decorator pat-

terns were affected by code smells in two projects, while Factory Method

implementations resulted being smelly in one project.
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ø Key findings of RQ1.

Classes participating in design patterns may be affected by code smells,

resulting impacted by the same problems they are supposed to avoid.

The State/Strategy pattern emerged in all projects as being threatened

by code smells, followed by the Adapter/Command pattern, which

resulted being compromised in six projects.

RQ2. On the Impact of Design Patterns on Code Smells

With our second research question, we aimed at assessing how the pres-

ence of design patterns impacts the arising of code smells. By performing

statistical analysis, we found that most design patterns did not influence

the code into being affected by code smells. However, in nine cases, the

analysis revealed that the implementation of design patterns determined

the presence of code smells in a statistically significant way. Table 5.2 re-

ports the complete results of the statistical analysis. The first observation

we noticed studying the results was related to the State/Strategy pattern, as

it appeared as the most co-occurring with code smells in the first phase of

our research. Nevertheless, the statistical analysis revealed that its pres-

ence did not significantly affect the emerging of Complex Class and God

Class smells, but only determined the code being Spaghetti. On the other

hand, the Adapter/Command pattern turned out to be significant in the

occurrence of the God Class smell and in a minor manner also for the

Spaghetti code, in concordance with the results observed in RQ1.

The presence of God Class was significantly affected also by the Bridge,

Singleton, and Template Method patterns, although the co-occurrences

were found in a few projects.

In contrast with the purposes of design patterns, which include guar-

anteeing code maintainability and comprehension, we found that their

presence often leads to the introduction of code smells, which are signs

of poor implementation practices instead. This led us to reflect on the

importance of properly designing and applying best practices for code
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maintainability, as the effects of our choices can produce unexpected out-

comes. We observed that, although design patterns are supposed to make

the perfect code, they can be determinant for the arise of code smells. We

conjecture that the motivation behind this phenomenon can be connected

with the intention driving the introduction of design patterns; attempting

to reorganize the code to make it better structured, developers actually

introduce degrees of complexity, ultimately leading to code smells threat-

ening the overall program comprehension.

ø Key findings of RQ2.

The presence of design patterns does not regardless guarantee good

quality, as they can be affected by code smells. In particular, the pres-

ence of a God Class can be associated with a number of patterns, such

as Adapter/Command, Bridge, Singleton, and Template Method.

5.4 T H R E AT S T O VA L I D I T Y

In this section, we recognize the possible threats that could impact the

results of our study, and discuss the mitigation strategies that we applied.

C O N S T R U C T VA L I D I T Y. Construct validity refers to the relationship be-

tween theory and observation. The main concern regards the selection

of the dataset leveraged in the experiments, as the choice of the dataset

can influence the observed results. To mitigate this aspect, we adopted

a rigorous process to select projects based on empirical evidence of

their characteristics. On the one hand, we selected only popular projects

publicly hosted on GITHUB, estimating their popularity based on the

number of stars. On the other hand, we only selected projects for which a

building system was provided, and we manually inspected projects to en-

sure compatibility with the tools adopted to extract design patterns and

code smells. Another possible threat to construct validity is concerned

with the tool leveraged to extract data on dependent, independent, and

control variables. To mitigate this aspect, we chose the state-of-the-art
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Table 5.2: Results of the statistical model concerning the relationship between
design patterns and code smells.

Design Pattern Complex Class God Class Spaghetti Code

Adapter/Command 8.341 0.594∗∗∗ -0.384∗

Bridge 17.129 17.129∗∗∗ 0.265

Component 166.346 1.544∗∗∗ -12.602

Decorator 125.670 -0.189 -0.808

Factory Method 1,063.142 -11.255 1.157∗∗

Observer 68.508 1.801 1.380

Proxy 1,008.371 -11.891 -10.424

Singleton 93.883 1.722∗∗∗ -2.392∗∗

State/Strategy -4.897 -0.036 0.349∗∗∗

Template Method -16.859 0.586∗∗∗ -0.146

LCOM -0.0001 -0.0003∗∗∗ -0.0003∗∗∗

LOC 0.014 0.007∗∗∗ 0.007∗∗∗

McCabe 7.598 -0.005∗∗∗ 0.002∗∗∗

NOA -0.088 0.034∗∗∗ 0.004∗∗∗

WMC -0.008 0.074∗∗∗ 0.033∗∗∗

Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

tools (I) to extract code smells and CK metrics, i.e., DECOR, and (II) to

detect design patterns, i.e., the tool proposed and validated by Tsantalis

et al. [346]. Although it comes with possible imprecision, i. e., design pat-

terns sharing the same UML structure (Adapter/Command and State/S-

trategy) are considered the same, it still represents the state-of-the-art

for design pattern detection.

I N T E R N A L VA L I D I T Y. Threats to internal validity are factors that could

influence the observed results. In order to avoid threats affecting the

statistical model employed to answer RQ2, we kept an eye on CK metrics,

which acted as control variables.
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C O N C L U S I O N VA L I D I T Y. The major threat to conclusion validity regards

the application of statistical models to answer our second research ques-

tion. We selected the Multinomial Logistic Linear model [339] due to the

nature of the problem, and we also considered possible multi-collinearity

to avoid any interpretation bias.

E X T E R N A L VA L I D I T Y. Threats to external validity are linked to the gener-

alizability of the observed results. We analyzed 542 releases of 15 different

projects in terms of scope and size. We are aware that generalizability can

depend on multiple aspects, such as programming language; however,

as part of our future work, we plan to extend this study, considering a

broader set of projects to analyze, selecting them according to a variety

of programming language, domain, and size.





6
U N D E R S T A N D I N G D E V E L O P E R P R A C T I C E S A N D

C O D E S M E L L S D I F F U S I O N I N A I - E N A B L E D

S O F T W A R E

6.1 I N T R O D U C T I O N

As previously in previous Chapters, the presence of code smells in source

code can negatively impact software maintenance and evolutionary ac-

tivities. Despite the willingness spent by researchers on this topic, we

noticed that several previous studies consider as the “lowest common

denominator” the adoption of Java programming language [102, 118, 348].

Although the use of Java is consolidated over time, other programming

languages—i. e., Python—are increasingly widespread; a recent statistic1

reports that Python jumped over Java in terms of diffusion in the last

few years. Although the possible reasons for this overtaking are multi-

ple, we noticed that it is common practice for practitioners and big com-

panies to select programming languages that allow combining different

paradigms—e. g., object-oriented and procedural— taking full advantage

of the features of each of the paradigms, characteristics that are by default

in Python. Moreover, from this perspective, we noticed that only a tiny sub-

set of previous work focuses on detecting code smells for Python projects

but considers only traditional systems [64, 65]. However, taking into ac-

count that Python is one of the most popular programming languages

to build AI-enabled Systems2 and considering the different philosophy

in terms of the mindset of Python, we noticed a lack of empirical inves-

tigation on the diffusion of code smells in AI-enabled Systems, and the

activities performed by developers during the introduction of them.

1https://www.statista.com/statistics/793628/worldwide-developer-survey-most-
used-languages/

2https://bootcamp.berkeley.edu/blog/ai-programming-languages/
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Seek consolidated literature on code smells in traditional systems drove

us to investigate them [98, 347]. That work emphasizes identifying the diffu-

sion of code smells and the activities most likely to cause their introduction

as a first step in keeping effort low during software maintenance [383].

To fill this gap, we investigated the diffusion of the code smells and the

activities that led developers to introduce them in AI-enabled Systems. To

conduct our analysis, we selected over 200 AI-enabled Systems provided

by NICHE dataset [372], considered over 10,600 releases identified with

PYDRILLER, and extracted information on code smells using PYSMELL.

The results indicated that: I) the code smells regarding the object-

oriented principles are rarely detected, and this suggests that Python de-

velopers tend to use other reuse mechanisms to build AI-enabled Systems;

II) complex List Comprehension has been observed 1465 times and is both

the most present and the most long alive; III) code smells do not follow a

specific and common pattern over time, but the trend seems to be project-

dependent; IV) the evolutionary activities are the most common activities

that can induce developers to introduce code smells.

Our work makes the following main contributions:

• A preliminary analysis of the diffusion of code smells in AI-enabled

Systems;

• A preliminary investigation on the activities performed by develop-

ers that led to the introduction of code smells in AI-enabled Systems;

• A publicly available replication package [117] containing raw data

and scripts used to conduct our work that researchers can use to

replicate or extend this work.

6.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The ultimate goal of this preliminary study is to analyze the diffusion

of code smells in AI-Enabled systems and understand the activities per-

formed by developers that, in turn, induced the introduction of code

smells, with the aim to identify how code smells are distributed in AI-
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Figure 6.1: Overview of the method applied in this study.

Enabled systems, and what stages of development are most likely to intro-

duce code smells. The perspective is for both developers and researchers.

The former are interested in avoiding an incidental introduction of code

smells that can increase the effort during maintenance and evolutionary

activities. The latter are interested in enhancing the knowledge of code

smells during the software evolution in systems different from Java. For

this reason, we formulated the following research questions:

Û RQ1. What is the diffusion of code smells in AI-Enabled systems?

Û RQ2. What are the activities that most frequently lead to the intro-

duction of code smells in AI-Enabled systems?

The objective of the RQ1 is to assess the diffusion of code smells in terms

of frequency, density, and variation with the purpose to give a general

overview of code smells in AI-Enabled systems. For these reasons, we

identified three sub-research questions:

R Q 1.1 . What is the frequency of code smells in AI-Enabled systems?

R Q 1.2 . What is the density of code smells in AI-Enabled systems?
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R Q 1.3 . What is the variation of code smells in AI-Enabled systems?

While the objective of the RQ2 is to identify commits that introduced new

code smells with the purpose of identifying which kinds of activities most

frequently induce the introduction of new code smells. To conduct our ex-

periments, we followed the empirical software engineering principles and

guidelines of Wohlin et al. [376]. In addition, we follow the ACM/SIGSOFT

Empirical Standards 3 to report our results. We include all the material,

including scripts, raw data, and figures, in our online appendix publicity

available [117]. Figure 6.1 provides an overview of the method applied to

perform our study.

Dataset Selection

The context of this experiment is composed of 200 AI-specific projects and

over 10,600 releases.

More specifically, to perform our analysis, we used NICHE

dataset [372]—i. e., a dataset published in 2023 that contains 572

AI-specific projects. The reasons why we chose this dataset are multiple.

On the one hand, the authors filter out unpopular projects—i. e., projects

with less than 100 stars and no longer active projects. On the other hand,

they manually verified information about the quality of the projects

using a heuristic approach by labeling 400 projects as “well-engineered”

according to 8 distinct dimensions: Architecture, Community, Continuous

Integration, Documentation, History, Issues, License, and Unit Testing.

A R C H I T E C T U R E . The projects have a clear definition of the components

and how they communicate with other parts of the software system.

C O M M U N I T Y. All software projects have numerous collaborators who

maintain the repository.

C O N T I N U O U S I N T E G R AT I O N . The projects use a CI mechanism that

ensures stable source code for development or release.

3Available at: https://github.com/acmsigsoft/EmpiricalStandards. We followed the
“General Standard” and “Repository Mining”guidelines.
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D O C U M E N TAT I O N . All projects provide documentation and additional

material useful during maintenance activities.

H I S T O R Y. Software systems have a long history that demonstrates devel-

opers performing maintenance and evolutionary tasks to ensure a high

level of functionality.

I S S U E S . The management activities have been done only using the

GitHub issue, thus improving the traceability between requirements

and source code.

L I C E N S E . Projects clearly display a usage license that is helpful for un-

derstanding the terms and conditions related to the partial or complete

reuse of system components.

U N I T T E S T. To ensure a good quality level, all the projects show unit tests

used to verify the correctness of the component.

We focused on the 400 projects labeled as “well-engineered” and ran-

domly selected a statistically significant sampling of 200 projects, consid-

ering a confidence level of 95%, and a margin error of 5%.

Data Collection

Once we identified the sample of projects, due to the time-consuming

activity, we set up PYDRILLER [327] to extract only commits marked as

“release” according to GitHub, and pull out the corresponding commit

message. We decided to focus only on these commits because they are

typically released after a more meticulous inspection by developers.4 At

the end of this step, we collected information on over 10,600 releases. To

extract Python-specific code smell, we used PYSMELL [64]—i. e., a code

smell static analyzer tool. The principal motivations that drove to use it

are that: I) PYSMELL can detect 11 types of Python-specific code smell, and

4https://docs.github.com/en/repositories/releasing-projects-on-github/about-
releases
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the authors manually validated the instances of code smells; II) The tool is

one of the most used in previous work on this topic [66, 353].

Finally, to better perform our analysis, we discarded projects not useful

for our study i. e., projects with zero instances of code smells and projects

with fewer than two releases. At the end of this phase, we obtained 34

projects useful for our analysis.

To the sake of comprehension, we report the list of code smells de-

tectable by PYSMELL with the relative detection rule in Table 6.1.

Code Smell Acronym Description Detection rule

Large Class LG A class with a large number of
operations.

Lines of code (LOC) ≥ 200 or Number
of Attributes (NOA)+Number of Meth-
ods (NOM) > 40.

Long Parameter
List

LPL A method or a function that con-
tains a long list of parameters.

Number of Parameters (PAR) ≥ 5.

Long Method LM A method or a function contain-
ing many Lines of Code (LOC).

Method Lines of Code (MLOC) ≥ 100.

Long Message
Chain

LMC An expression that accesses an
object using a long line of dot
operations.

Length of Message Chain (LMC) ≥ 4.

Long Scope Chain LSC A method or a function that
shows a multiple-nested.

Depth of Closure (DOC) ≥ 3.

Long Base Class
List

LBCL A class that has been defined
with too many base classes

Number of Base Classes (NBC) ≥ 3.

Useless Exception
Handling

UEH An exception too many generic
or that contains an empty state-
ment.

Number of Except Clauses ((NEC)=
1 and Number of General Exception
Clauses (NGEC) = 1) or NEC = Number
of Empty Except Clauses (NEEC)

Long Lambda
Function

LLF A lambda function that contains
multiple and complex expres-
sions.

Number of Characters in One Expres-
sion (NOC) ≥ 80.

Complex List Com-
prehension

CLC A list comprehension that con-
tains multiple and complex ex-
pressions.

Number of Loops (NOL) + Number of
Control Conditions (NOCC) ≥ 4.

Long Element
Chain

LEC An expression accessing an ob-
ject using a long list of bracket
operators.

Length of Element Chain (LEC) ≥ 3.

Long Ternary Con-
ditional Expression

LTCE A ternary conditional expres-
sion too many long.

Number of Characters in One Expres-
sion (NOC) ≥ 40.

Table 6.1: Code Smells detectable by PYSMELL with the related detection rule.
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Data Analysis

Once we had the data collection, we analyzed the information from both

quantitative and qualitative standpoints.

To address RQ1, we analyzed code smell diffusion in terms of frequency,

density, and variation over time. To analyze the frequency, we built a

Python script to count for each release the instances of code smells, and

then, we aggregated results independently from the project to provide a

generic overall. To identify the density, we calculated the ratio between the

number of smells and lines of code (LOC) for each release for all projects.

Lastly, we clustered results in a time interval to calculate the variation.

To address RQ2, we analyzed the activities that led developers to intro-

duce code smells. To address this, we performed the following steps: 1) We

merged in a single CSV file all the output files; 2) For each pair release Ri ,

Ri+1 ∈ project P j , we labeled the release Ri+1 as “increase” if the difference

in terms of the number of code smells between the version Ri+1 and Ri is

more than 0; “stable”, in the difference equal to 0; and lastly, “decrease” if

the difference is lower than 0; 3) To identify what activities have been done

by developers who have introduced code smells we labeled the commit

marked as “increase” with “Bug fixing ”, “Evolutionary Activity”, “Refac-

toring”, or “Other” according to the corresponding commit message, as

also done in previous work [347] by using a manual “pattern-matching”

strategy—i. e., we manually verify the presence of specific keywords, e. g., “

bug fix” to indicate a bug fixing activity—in the commit message. To per-

form this step, the first two authors of this work independently labeled

each commit marked as “increase” based on what they felt was the cat-

egory that corresponded to the most appropriate activity, and in case of

discordance, were discussed by involving the other authors of the study

until convergence was reached.

At the end of this step, all authors agreed on the assigned categories.

Table 6.2 shows the labels with the relative descriptions.

Two aspects are worth discussing. First, due to ambiguous commit mes-

sages, we decided to discard from our analysis commits labeled as “Other”
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Label Description

Bug Fixing A commit removes a bug in the source code

Evolutionary Activity A commit that introduces a new feature in the system

Refactoring A commit that performs a refactoring activity

Other A commit that does not provide sufficient information to be labeled

Table 6.2: Description of the labels used.

to avoid possible noise—e. g., message commits not written in English.

Second, we give, in some cases, a combination of two or more labels—e. g.,

Bug-Fixing and Refactoring—because, in some cases, the commit mes-

sages referred to more than one activity.

6.3 A N A LY S I S O F T H E R E S U LT S

In this section, we report the main results of our analysis and discuss

findings and implications.

RQ11. On the frequency of Python-specific code smell

To address the RQ11, we analyze the frequency of Python-specific code

smell. Figure 6.2 indicated the frequency of code smells.

According to our results, it is possible to make several considerations.

First, we noticed that 3 of the 11 code smells categories were not detectable

during our analysis—i. e., Large Class, Long Base Class List, and Useless

Exception Handling. Considering that previous work on object-oriented

languages underlines the predominance of these smells [319] and that

all of them referred to improper use of the object-oriented principle, the

main assumption of the absence of this family of smells is that developers

do not adopt or only partially adopt object-oriented approaches to build

AI-enabled systems, but prefer others reuse strategies. Second, we noticed

a clear gap between the first two smells—i. e., Complex List Comprehension

and Long Ternary Conditional Expression—which appear respectively 1400

and 226 times and the other 6 smells. In both cases, the smells refer to
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Figure 6.2: Results of the frequency of Python-specific code smell over time.

syntactic contractions to reduce the lines of code required to perform an

operation. This result suggests a possible correlation between the Python

philosophy that encourages developers to write compact code snippets

and the massive presence of these smells.

RQ12. On the density of Python-specific code smell

To address the RQ12 we analyze the density of code smells from an evolu-

tionary perspective. We observed that they often do not exhibit a consistent

pattern of increase/decrease over time. Instead, they appear to be influ-

enced by external factors, as exemplified by the anomaly observed in row

4, column 6, where an unstable pattern can be observed. These anomalies

lead us to believe that the code smells introduction and their removal

could vary causally due to software evolution activities. Figure 6.3 provides

the density overview for all the projects under analysis.
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Code Smells density for the project:  Caiman
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Code Smells density for the project:  Ciphey
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Code Smells density for the project:  Egg
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Code Smells density for the project:  Histomicstk
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Code Smells density for the project:  Malaya
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Code Smells density for the project:  Optimus

1.5e−05

2.0e−05

2.5e−05

3.0e−05

09
20

2b
11

41
17

9e
0b

cb
fd

7c
88

c3
fb

13
2c

17
3e

c9
b9

0a
c8

66
0d

58
44

89
a1

86
ed

5a
26

25
e2

d6
d9

b8
0e

a3
8a

10
3d

50
32

a9
ed

6a
6a

bd
8f

bc
c3

9d
a9

b7
bd

21
98

11
45

19
2c

4b
ed

a1
f6

67
76

f6
ed

e9
4a

11
80

8e
b7

b4
65

1f
01

1a
2b

f6
31

4c
91

bb
d9

0a
b5

9e
e8

c1
40

dc
ea

43
93

f0
f4

1e
b2

08
90

32
d2

9c
4f

a2
f8

f7
02

2a
1a

ae
fa

10
96

e7
bc

23
66

40
e6

40
ae

0b
7b

2a
dd

6e
bc

bb
22

fe
3b

67
fd

46
1e

30
7f

7c
9e

c2
55

c9
c3

59
4a

9e
57

c8
2a

2b
90

64
c6

98
43

3a
95

70
76

d0
df

87
20

3e
10

56
b4

42
a5

9d
4f

f5
6a

88
10

3c
f8

90
d1

43
35

a0
2d

2f
ae

04
42

d7
f1

63
d0

19
fb

4f
5e

3c
fa

0b
ed

3e
83

4a
37

48
35

f3
f3

b6
4a

70
63

6a
9b

5e
74

41
fa

b7
01

f9
6a

ce
5d

b6
4b

2e
90

23
71

17
26

59
38

13
ae

45
ca

8f
86

bf
f7

e8
75

21
ad

21
09

1e
f7

9e
ab

ab
d1

97
81

47
8d

67
ec

7b
d4

06
2f

d6
d4

fb
79

a2
2f

ed
ba

02
b5

9a
45

4b
1d

5b
cf

4a
f2

60
64

b6
17

a5
63

cf
63

ba
66

af
25

4e
ee

4c
a9

21
bb

33
6e

c5
96

a8
e4

4f
2d

5b
69

9d
f8

fb
aa

9a
e9

5a
79

f4
c1

bb
33

f3
dd

38
22

7c
34

f3
fd

ae
89

e1
e1

9c
c3

5d
dd

8e
f2

04
a8

35
2d

19
d4

bd
21

2a
4d

e5
d4

b7
ca

6f
a9

73
c7

34
d0

ee
35

27
32

36
05

2c
d2

53
9e

11
13

10
21

b8
30

7c
50

3b
2a

f0
51

10
f5

c2
a0

02
76

a8
c3

8b
fd

f9
43

11
90

89
bf

92
ffd

0c
b0

3a
d0

8f
f8

99
29

ea
c8

a5
07

d4
a3

07
4

8d
57

a2
d0

5d
3d

ac
ae

38
88

1c
9d

6b
73

b8
32

2a
08

cd
37

8f
80

39
b4

3d
ea

8d
82

12
6a

e6
70

07
d0

b5
54

b8
fe

fe
bc

99
02

36
df

ca
56

61
8f

25
ae

1a
a7

e1
4f

ae
2e

ef
08

92
ac

ac
29

04
5f

6c
ef

b0
ab

46
df

1f
f5

42
01

60
69

46
65

43
27

bb
7c

17
73

90
2e

4d
2f

3d
43

a2
41

81
36

97
3e

ac
55

cf
8d

be
63

ee
96

61
ef

d4
ac

6e
08

9b
f7

33
db

28
0e

b8
fd

f5
dc

c4
f4

e2
42

e8
91

32
c4

b5
15

e5
02

e7
3a

5c
7d

98
11

ac
e6

c9
14

8b
4c

c9
f9

ee
95

ad
17

91
e2

90
69

87
4f

e5
96

12
8b

ed
d4

d4
02

05
b5

0d
66

7d
5e

a5
7a

1a
49

74
50

a2
90

55
13

fa
4f

e6
a2

ba
33

fb
df

1f
f7

b5
10

3f
c3

53
75

67
99

52
9f

fc
3a

1a
26

08
79

7a
93

8b
be

08
de

8f
51

33
82

f7
bf

97
a3

Commit_Hash

D
en
si
ty

Code Smells density for the project:  Adversarial−Robustness−Toolbox
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Code Smells density for the project:  Beam
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Code Smells density for the project:  Bitextor
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Code Smells density for the project:  Brainiak

0.000050

0.000075

0.000100

0.000125

0.000150

06
4d

df
58

8f
ae

4c
e8

fe
b3

85
1f

fd
6f

67
90

c2
31

bd
03

1e
25

4b
f0

1d
4e

73
bf

47
42

fe
a1

7c
78

b7
16

1e
65

af
e0

66
ce

5d
b6

61
70

3d
01

3a
68

34
a5

02
fb

4b
8e

03
65

63
5c

79
77

59
8d

be
17

69
f4

75
d6

6d
9b

34
72

8a
5e

29
22

cf
fc

Commit_Hash

D
en
si
ty

Code Smells density for the project:  Dm−Haiku
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Code Smells density for the project:  Fastnlp
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Code Smells density for the project:  Feast
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Code Smells density for the project:  Flair
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Code Smells density for the project:  Flow
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Code Smells density for the project:  Fonduer
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Code Smells density for the project:  Ivis
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Code Smells density for the project:  Kapre
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Code Smells density for the project:  Mindmeld
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Code Smells density for the project:  Neuralcoref
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Code Smells density for the project:  Nevergrad
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Code Smells density for the project:  Pytorch−Toolbelt

0.0012

0.0013

0.0014

0.0015

0.0016

db
87

77
ec

1f
7e

de
bd

62
0c

d5
dc

73
b5

63
03

f2
76

3b
9c

e8
e3

0e
dd

6a
fa

e6
a9

c0
51

22
a1

35
2e

91
a7

1c
39

bb
91

Commit_Hash

D
en
si
ty

Code Smells density for the project:  Rmdl

0.001350

0.001355

0.001360

0.001365

0.001370

0c
ae

c9
ed

0f
83

cb
65

ba
20

67
8a

80
5e

50
14

39
d2

bc
25

a8
66

33
3f

04
3f

9f
42

d0
20

c3
74

bf
c5

d2
13

44
36

86
2f

Commit_Hash

D
en
si
ty

Code Smells density for the project:  Sfmlearner−Pytorch
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Code Smells density for the project:  Pytorch_wavelets
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Code Smells density for the project:  Pytorch−Widedeep
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Code Smells density for the project:  Smote_variants
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Code Smells density for the project:  Sonnet
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Code Smells density for the project:  Sru
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Code Smells density for the project:  Submarine
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Code Smells density for the project:  Torchani

5.6815e−05

5.6820e−05

5.6825e−05

1f
d0

73
18

54
55

a2
c4

64
3f

00
38

b8
07

0c
0e

c5
b5

01
51

53
2c

2d
3d

bc
91

03
a7

c7
25

01
d7

18
9f

69
51

8b
e2

8d
7f

d0
36

d6
41

e9
9e

38
b8

45
fb

3b
30

b8
36

5f
fd

ba
18

ed
e5

Commit_Hash

D
en
si
ty

Code Smells density for the project:  Torchio
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Code Smells density for the project:  Trains
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Figure 6.3: Overview of the density of code smells for each project analyzed.

RQ13. On the variation of Python-specific code smell

To address the RQ13 we analyzed the code smells variation. We decided to

show the results in a 3-month interval for readability reasons.

Figure 6.4 shows the code smells trend over time. Several considerations

can be made when looking at the figure. First, no common pattern has

been identified, suggesting that the code smell variation also seems project-

dependent. Perhaps more interesting, we noticed that 80% of the projects

had been affected at least once by a Complex List Comprehension. This
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Figure 6.4: Results of the variation of Python-specific code smell per month.

outcome reinforces the results of RQ11, showing that introducing this kind

of smell is frequent in these systems. Lastly, we noticed that this smell is

also one of the longest-lived, as in some cases, its presence covers a period

from 2017 to 2023.
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ø Key findings of RQ1.

The density of code smells does not follow a specific pattern but varies

depending on the project being considered. Code smells related to

object-oriented practices are never detected during our analysis. The

most frequent smell is Complex List Comprehension, with 1465 obser-

vations that are also the longest-lived.

RQ2. On the activities that led developers to introduce code smells in AI-

enabled Systems

To address the RQ2, we analyzed activities that led developers to introduce

code smells in AI-enabled Systems as specified in the section 6.2.

Figure 6.5 shows the results obtained.
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Figure 6.5: Activities performed by developers during the introduction of code
smells.
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The main outcome of this RQ is that developers introduce code smells in

70% of the cases during evolutionary activities. More in detail, by analyz-

ing the commit messages it was observed that in most cases the commits,

were related to merge activities or had generic messages indicating a sys-

tem update. Although no further clarification can be provided for those

generic commit messages related to system upgrades, it is assumed that

the complexity and criticality of merge activities increase the likelihood of

introducing code smells. Furthermore, due to the unstable trend exhibited

over time, we can assume the developers tend to neglect the adoption of

quality assurance tools throughout the software life cycle for monitoring

code quality attributes. This highlights an unawareness regarding the po-

tential impact of software quality degradation, which can lead to increased

system complexity and the introduction of software bugs.

ø Key findings of RQ2.

Code smell introduction is most common in evolutionary activities.

In particular, we noticed that the merge operations could drastically

increase the possibility of introducing them in AI-enabled Systems.

Finally, our findings suggest a lack of awareness by practitioners of the

importance of monitoring quality attributes of source code as their

systems evolve.

6.4 T H R E AT S T O VA L I D I T Y

In this section, we discuss threats to the validity that could have affected

the results and the strategies we applied to mitigate them.

C O N S T R U C T I O N VA L I D I T Y. This threat regards the relationship be-

tween theory and observation. The crucial aspect in our case regards

the dataset exploited. We are conscious that the project selection

can influence the results obtained. However, to mitigate this aspect,

we selected NICHE dataset—i. e., a dataset manually labeled and

validated by other researchers as “well engineered” projects accord-
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ing to 8 different dimensions. Another threat regarding the data

collection phase: to mitigate this aspect, we used well-established

tools—i. e., PYDRILLER and PYSMELL. The first has been used to

extract information on releases, while the second has to extract in-

formation on Python-specific code smells. In any case, we made all

script, additional material, and row data publicly available for the

sake of verifiability. While we recognize possible limitations of these

two tools, they represent the state of the art.

C O N C L U S I O N VA L I D I T Y. The main threat that can affect the conclusion

validity refers to the use of PySmell to detect Python-specific code

smells for AI-Enabled systems. While previous research underlines

that other tools cannot work in AI-Enabled systems, no studies have

been performed on PySmell. As part of our agenda, we will investi-

gate the precision and recall of this tool on AI-Enabled systems.

E X T E R N A L VA L I D I T Y. This threat is mainly connected with the general-

izability of results. To mitigate this aspect, we analyzed 200 projects

and 10,600 releases of open-source projects with different domains

and different characteristics in terms of size, number of classes,

and so on. Furthermore, we planned to conduct further analysis

by increasing the number of projects and commits to assess our

preliminary results.
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This section provides the background information useful to comprehend

code quality aspects considered in our secondary studies i. e., security and

privacy for systems that use emerging technologies.

More in detail, section 7.1 provides a general overview of the architecture

of IoT systems. Section 7.2 and section 7.3 respectively discuss the state-

of-the-art of the closest studies on other SLRs on how AI was used to deal

with privacy in IoT systems and previous work on the capabilities of static

vulnerabilities tools was used in the context of mobile applications.

7.1 A N O V E R V I E W O F I O T A R C H I T E C T U R E S

Figure 7.1 shows the current theoretical architecture of a generic IoT device.

The architecture is componsed by: perception layer that include objects

and sensors that compose the device, like GPS sensors, bar-code scanners,

and RFID sensors. The “Transport” layer that receives pre-elaborated infor-

mation and analyzes it through two sub-layers: The Network Capabilities

and the Transport Capabilities. The former allows the device to connect to

the network and proceed with the authentication and the access control

mechanism; the latter implements the mechanisms needed to transfer the

data to the upper levels (e.g., through the definition of wired or wireless

protocols like Wi-Fi, RFID sensors, and Bluetooth. The “Processing” layer

offers a support mechanism to store the data received by the lower layer;

this layer usually uses cloud infrastructures, ubiquitous computing, and,

finally, it is used to perform data analysis tasks and generate actions that

could influence the environment. From the user’s perspective, the “Appli-

cation” layer offers an interface between the IoT devices and applications

that could be built. It is used to develop and deploy IoT applications like a

113
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Figure 7.1: Five Layer Architecture.

specific application to govern a smart home or monitor a patient with a

healthcare app. Finally, the “Business” layer is used to manage and con-

trol applications using flow charts, graphs, and dashboards. This is the

layer employed for the decision-making process, where one can decide

which actions or operations should be done with the information received

from the previous layers. This layer is directly involved in protecting the

end user’s privacy. In any case, it is worth remarking that, in a real-world

scenario, the architectures described are often subject to changes or cus-

tomization to meet specific requirements of the application to build or

because of the heterogeneity of the IoT devices. As such, the architectures

should be considered as a starting point for building IoT applications.
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7.2 A L I T E R AT U R E R E V I E W O F S E C U R I T Y A N D P R I VA C Y I N I O T S Y S -

T E M S

Recently, some literature reviews targeted the privacy of IoT systems. Most

of them treated the problem by investigating the major privacy threats in

IoT environments, focusing on the root causes of privacy concerns rather

than how artificial intelligence methods have been exploited to identify

privacy issues or preserve privacy.

Aleisa and Renaud [11] surveyed the literature from 2009 and 2016 to

investigate (1) the geographic distribution of privacy issues, finding this

typically concerns Europe and North America; (2) the data collection meth-

ods, which were found to be diverse and scattered, other than mainly fo-

cusing on quantitative perspective; (3) the hardware technologies, that in

about 35% of the cases refer to RFID sensors; (4) the major issue about

privacy, namely the lack of privacy-preserving mechanisms; and (5) the

topics treated, with authentication and authorization mechanisms being

the most popular ones. In doing so, the authors did not only collect pub-

lished research papers but also news stories and privacy reports to analyze

a larger variety of privacy violation perspectives.

Ziegeldorf et al. [410] elaborated on a list of IoT environments’ privacy

threats, reporting the following ones as the most harmful:

I D E N T I F I C AT I O N . This relates to the possibility of identifying a device

through its IP address or machine name;

L O C A L I Z AT I O N A N D T R A C K I N G . This threat refers to the possibility of

detecting user traffic in multiple ways, e. g., using a GPS sensor or smart-

phone localization;

P R O F I L I N G . The profiling threat involves the potential for tracking user

information to identify relevant data about the target;

I N T E R A C T I O N A N D P R E S E N TAT I O N . This aspect refers to Machine-

Machine Interaction. Indeed, a threat to privacy could arise when these

devices share information with other devices;
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L I F E C Y C L E T R A N S I T I O N S . This threat occurs when the devices assume

that the information previously shared with other devices has been

deleted. However, the devices that receive that information could be

storing those data for unclear reasons;

I N V E N T O R Y AT TA C K S . This aspect refers to the possible unauthorized

access inside the device. Indeed, the malicious user could detect possible

sensible data and use it for multiple illegal actions;

L I N K A G E . This threat refers to privacy issues arising when multiple de-

vices are connected and share information; in these cases, the devices

could be used for unauthorized access inside the system.

The work by Ziegeldorf et al. [410] is not meant to be a systematic in-

vestigation but rather a viewpoint on the key concerns threatening the

privacy of IoT systems.

Two literature reviews have been recently published by Hussain et al.

[152] and Waheed et al. [360]. Similarly to us, both of them investigated

the role of artificial intelligence in the context of IoT privacy.

Hussain et al. [152] conducted a literature review to delineate the current

solutions and the future challenges of the use of machine learning in IoT

environments, with a particular focus on privacy issues. From a technical

standpoint, the authors conducted a meta-analysis of the previous surveys

on software security and IoT systems in order to investigate two aspects.

First, they synthesized the motivations for using machine learning tech-

niques in the context of IoT. Secondly, they summarized which are the

machine learning algorithms employed. In this respect, their focus was

mainly on the analysis of the efficiency and complexity of the machine

learning solutions proposed so far. Hence, with respect to the work by

Hussain et al. [152], ours can be seen as a systematic and complementary

analysis where we focus on the design of the machine learning pipelines,

namely the strategies employed to train, build, and validate the models.

Furthermore, our systematic literature review (I) does not limit itself to

machine learning but explores the broader application of artificial intel-
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ligence methods and (II) considers additional dimensions such as the

domains and the privacy issues.

Waheed et al. [360] conducted a systematic literature review of the re-

search papers published from 2008 to 2019 that focused on understanding

the role of machine learning and blockchain to deal with security and

privacy in IoT systems. Waheed et al. focused on threats and countermea-

sures for security and privacy concerns, reporting the lack of survey efforts

in the context of machine learning and privacy.

7.3 L I T E R AT U R E R E V I E W O N A N D R O I D V U L N E R A B I L I T I E S

A significant amount of previous work designed automated techniques

to identify vulnerabilities: they establish the level of security of mobile

apps with respect to various vulnerability types based on the analysis of

various static constructs [303], textual analysis [83], or data flow (e.g., use-

def relations [71]). A systematic overview of these approaches has been

recently proposed by Li et al. [197].

A number of studies focused on understanding ANDROID vulnerabilities.

Linares-Vásquez et al. [205] classified the vulnerabilities affecting the AN-

DROID OS. In contrast, Gao et al. [109] focused on the evolution of software

vulnerabilities from the perspective of mobile apps. Additional studies

pertained to third-party libraries [296, 393] and how they might potentially

threaten software security aspects of source code.

A few taxonomies of software vulnerabilities in mobile apps have been

proposed. Sadeghi et al. [293] conducted a systematic literature review on

the research on mobile app security, defining a taxonomy of the vulnerabil-

ities treated by researchers over the years. Qamar et al. [284] and Mirza et

al. [242] defined context-specific taxonomies that cover the vulnerabilities

affecting the mobile banking domain.





8
O N T H E U S E O F A R T I F I C I A L I N T E L L I G E N C E T O D E A L

W I T H P R I V A C Y I N I O T S Y S T E M S : A S Y S T E M A T I C

L I T E R A T U R E R E V I E W

8.1 I N T R O D U C T I O N

We live in a world that is more and more virtualized and where people can

do anything, anytime, from anywhere [341].This is enabled by the availabil-

ity of devices and sensors that can capture the surrounding environment

and/or the user requests in order to distribute them toward other devices

and sensors and produce data, knowledge, actions, communications, en-

tertainment, and others: this is what we call Internet-of-Things (a.k.a. IoT)

[33]. It is not easy to give an all-encompassing definition of IoT because the

field of applicability of these devices is so vast to risk not including some

possible domain or sub-domain. However, Strous et al. [331] tried to give a

general definition that can be summarized as “IoT is the inter-networking

of physical devices such as vehicles, home appliances, medical devices and

so on that can collect and exchange data and interact with other devices

using the Internet to monitor or control something.” The key objective of

IoT is indeed that of providing people with an infrastructure that allows

ubiquitous access to devices and service providers [204]. The last decades

have seen an ever-growing interest in IoT, and the vast majority of services

and communications are currently offered through IoT devices like smart-

phones and other smart objects [129, 177]. Recent statistics report that, in

2020, the number of IoT devices connected to the Internet is about 8.74

billion, and this number will increase by 25 times in 2030.1 However, the

growth of IoT is not exempt from serious security threats and privacy [410].

1Source STATISTA.COM: https://www.statista.com/statistics/1183457/iot-c
onnected-devices-worldwide/.
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In particular, IoT devices typically have low memory and produce large

amounts of sensitive data that are sent and elaborated by servers, which

then return the outcome of the elaboration to those devices [168]. Such

an intensive exchange of data naturally allows external attackers to steal

information and use them for malicious reasons [13, 258], as we witness

too often in the news. Some of the most recent, resounding examples are

connected to the malicious use of smart assistants2 or even the influence

that IoT data leaks might have had on the 2016 US elections.3 The problem

of privacy is so spread in practice that Meneghello et al. [236] defined IoT

as the Internet-of-Threats, synthesizing the current body of knowledge

on security weaknesses of commercial IoT solutions and highlighting the

need for automated mechanisms that may support the detection of pri-

vacy concerns in IoT systems. Researchers have actively embraced this call

through the definition of techniques based on blockchain [186, 187], gate-

way instrumentation [231], privacy-preserving data aggregation schemas

[195, 212], to name a few.

Besides the techniques discussed above, a recent trend is represented by

the adoption of artificial intelligence (AI) algorithms and models. These

approaches concern the design of supervised and unsupervised methods,

meta-heuristics, or reasoning approaches to detect potential privacy leaks

or to preserve privacy in IoT systems [247]. For example, Majumder and

Izaguirre [222] developed an AI-based security system that, employing

motion detection and facial recognition, might prevent the malicious

intrusion of externals into IoT systems. Similarly, Liu et al. [208] developed

a fully encrypted Convolutional Neural Network (CNN) [10] to monitor

the vital signs of patients: the encryption mechanism allowed to hide

personal data during the training phase of the artificial intelligence model,

preserving privacy.

Most of this research has been conducted by researchers in the fields of

algorithms, cybersecurity [70], and networks. We advocate that it is time

2The ALEXA case: https://www.theguardian.com/technology/2019/oct/09/ale
xa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants

3The CAMBRIDGE ANALYTICA case: https://www.theguardian.com/news/2018/ma
r/17/cambridge-analytica-facebook-influence-us-election.

https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants
https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
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for software engineering to come into play by conducting empirical inves-

tigations into the matter and proposing novel instruments to support de-

velopers of IoT systems. In this respect, we notice a lack of comprehensive

knowledge on what are the privacy issues tackled by artificial intelligence

approaches, which design and validation choices were applied when as-

sessing those techniques, which are the current limitations induced by

these choices, and in which domains the application of AI-based meth-

ods seem more promising. An improved understanding of these aspects

is crucial for (I) assessing the current capabilities of these methods; (II)

pointing out potential limitations of the techniques employed so far; and

(II) identifying additional domains and/or methods that may be used to

detect possible privacy issues and preserve data privacy in IoT systems. All

these angles might be of interest to our research community to identify

the areas where to focus our collective effort.

Hence, in this chapter, we conduct a Systematic Literature Review (SLR)

on the usage of artificial intelligence techniques for the detection of privacy

issues or to preserve privacy in IoT systems.

We employ well-established guidelines [175, 374] to systematically

search the literature on the matter: from an initial set of 2,202 papers,

we identify 152 primary studies that we then analyze to address the three

perspectives of interest.

The analysis of the research literature highlights an increasing interest

in artificial intelligence methods for the privacy of IoT systems, and, in-

deed, we find that a large portion of the papers were published in 2020.

In addition, we identify two key use cases: artificial intelligence is used

to spot privacy issues or prevent their emergence, yet there exist several

sub-fields where AI-based techniques might be applied. While the most

widely used approach is Support Vector Machine, we discover that only a

few papers elaborated on the rationale behind the selection of the AI tech-

nique and, perhaps more importantly, that most of the approaches have

been assessed through a limited and potentially biased evaluation metrics.

Lastly, we find that the vast majority of the published papers do not include
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explicit indications on the domains where the proposed techniques can

be applied, hence threatening their actionability and reproducibility.

Based on our findings, we identify several future research directions and

implications for the research community that encompass the adoption,

definition, configuration, and validation of artificial intelligence methods

for IoT privacy.

8.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The goal of the study is to survey the research literature that applied artifi-

cial intelligence methods for detecting privacy concerns and preserving

privacy in IoT systems, with the purpose of providing software engineering

researchers with actionable items and insights that they can exploit to

investigate the matter further and improve the automated support made

available to developers and managers to deal with privacy concerns. The

perspective is that of researchers who are interested in assessing the cur-

rently existing methodologies and how to improve them.

To address our goal, we developed and conducted a Systematic Litera-

ture Review (SLR), which is a synthesis process through which the existing

research papers on a subject of interest are systematically identified, se-

lected, and critically appraised to address one or more research questions

[175]. In the context of our work, we followed the well-established guide-

lines originally proposed by Kitchenham and Charters [175]. To provide

additional rigor to the analysis, we also integrated the standard procedure

with the so-called snowballing procedure [375], i.e., a methodology used

to scan the incoming and outcoming references of the primary studies

identified by the systematic search for identifying additional sources. We

followed the snowballing guidelines provided by Wohlin [374]. In terms of

reporting, we followed the ACM/SIGSOFT Empirical Standards.4 and, in

particular, the “General Standard” and “Systematic Reviews” guidelines.

4Available at: shorturl.at/cBDH6.

shorturl.at/cBDH6
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Research Objectives and Questions

The specific research objectives of the systematic literature review are

reported in the following:

O B J E C T I V E 1 . Understanding the IoT privacy tasks targeted with artifi-

cial intelligence techniques;

O B J E C T I V E 2 . Understanding the IoT domains where artificial intelli-

gence techniques have been employed.

O B J E C T I V E 3 . Understanding the design, configuration, and evaluation

of AI techniques for privacy in IoT systems.

While the literature on privacy of IoT systems [342] has established a

number of static and dynamic instruments that help developers detecting

the presence of privacy threats, our objectives are motivated by recent

research efforts in the field of privacy and security showing an increasing

trend in the adoption of artificial intelligence methods to deal privacy

in IoT systems. [181, 245]. For instance, Kuzlu et al. [181] advocated the

exponential growth in the development of complex artificial intelligence-

enabled algorithms to protect IoT systems. This was confirmed by a num-

ber of additional studies in the field of privacy and security (e.g., [115, 261,

378]). These observations posed the foundations of our research objectives.

We argue the need for a comprehensive understanding of how artificial

intelligence methods have been engineered for securing the privacy of

IoT systems. This is crucial to assess the software engineering angle of the

matter, possibly letting emerge problems and challenges that our research

community might help addressing.

Our objectives have influenced the formulation of our RQs:

Û RQ1. What are the IoT privacy tasks that can be tackled with the use

of artificial intelligence techniques?
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RQ1 aimed at addressing the first objective and investigating the most

common privacy tasks addressed through the adoption of any form of

artificial intelligence method. The research question is motivated by our

willingness to provide a comprehensive overview of the state of art re-

garding privacy tasks treatable with AI-based methods: this may reveal

tasks that have been only partially considered by the state of the art, hence

suggesting potential future work in the field.

Û RQ2. Which are the IoT domains where artificial intelligence tech-

niques have been applied to deal with privacy?

This research question addressed the second overall objective of the

study and was motivated by the willingness to assess the typical domains

where artificial intelligence techniques have been applied to the problem

of privacy, which may naturally highlight additional domains where the

application of these techniques might be worthy.

Û RQ3. Which families of artificial intelligence algorithms were used to

deal with privacy in IoT systems?

Û RQ4. Which datasets were used to validate the artificial intelligence

methods employed to deal with privacy in IoT systems?

Û RQ5. Which strategies were used to validate the artificial intelligence

methods employed to deal with privacy in IoT systems?

Û RQ6. What are the evaluation metrics employed to assess the quality

of the artificial intelligence methods employed to deal with privacy in

IoT systems?

With the set of research questions from RQ3 to RQ6, we aimed at address-

ing the last objective and investigating the inner-working of the artificial
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intelligence techniques employed in the literature. It is important to note

that such an analysis was motivated by a key consideration in the field of

artificial intelligence and machine learning: the design, configuration, and

validation of those techniques might heavily influence the interpretation

of the performance [221, 254, 301]. Hence, our research questions shed

light on how researchers have defined these techniques, possibly revealing

common patterns and limitations to address. In addition, these research

angles allowed us to complement previous work on the use of artificial

intelligence methods for IoT privacy [152, 360], by providing a deeper

understanding of the methodology used to define artificial intelligence

pipelines to be used when detecting privacy issues or preserving privacy.

Research Query definition

One of the key methodological steps of a systematic literature review is

identifying appropriate search terms that may help retrieve a comprehen-

sive set of sources. In this respect, we adopted the following strategy:

• For each research question, we first extracted the most relevant

keywords—these represented the base to conduct our search;

• For all relevant terms, we identified possible synonymous or alterna-

tive spelling;

• We used boolean operators to compose the research query.

The outcome was the following research query:

Search Query

(“privacy” OR “anonymization” OR “sensitive information” OR “sen-

sitive words”) AND (“iot” OR “Internet-of-Things”) AND (“machine

learning” OR “artificial intelligence”)

As shown, we put in OR all the synonyms of the same concept, while

multiple concepts were combined using the AND operator. The basic idea
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behind this step was to verify the consistency and completeness of the

selected terms against papers that reported a systematic investigation of

the literature. Therefore, they are supposed to contain a complete mapping

of the terms used in literature to indicate privacy concerns. This step

allowed us to include alternative words in the search query in case these

were not included initially. This did not eventually happen since we did

not identify any additional terms to include.

As for the artificial intelligence-related terms, the existing literature

reviews targeted just part of the problem, i.e., the use of machine learning.

Therefore, it was impossible to check the selected terms’ completeness

against them. In any case, we preferred to include both “machine learning”

and “artificial intelligence” to (1) not miss any of the resources considered

by previous systematic literature review and (2) identify sources that did

not employ machine learning but other forms of artificial intelligence.

Search Databases

Once we defined the search query, we selected the databases to use when

performing our search. Correct identification of those databases is fun-

damental to have a successful literature review [175]. For this reason, we

selected the top-three research databases,5 namely:

• IEEEXplore (http://ieeexplore.ieee.org);

• Scopus (www.scopus.com);

• ACM Digital Library (https://dl.acm.org).

These databases are typically used to conduct systematic literature re-

views [47, 174] and, perhaps more importantly, guarantee complete cover-

age of the published research, hence allowing us to access the entire set of

papers.

5source: https://paperpile.com/g/research-databases-computer-science/.

http://ieeexplore.ieee.org
www.scopus.com
https://dl.acm.org
https://paperpile.com/g/research-databases-computer-science/
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Exclusion and Inclusion criteria

Exclusion and inclusion criteria allow the selection of resources that ad-

dress the research questions of a systematic literature review [174]. In the

context of our study, we identified and applied the following “Inclusion/Ex-

clusion” criteria.

E X C L U S I O N C R I T E R I A : The resources that met the following constraints

were filtered out from our study:

• Papers not written in English;

• Short papers, namely papers with a number of pages lower than

seven;

• Workshop papers;

• Duplicated papers;

• Papers whose full text read was not available;

• Conference papers later extended to journal;

• Master Theses.

Using these filters, we could exclude all preliminary research results, e.g.,

workshop or short papers, but also avoid considering a similar paper

multiple times, e.g., in case of an archived journal paper that extends a

conference publication or in case of duplicates.

I N C L U S I O N C R I T E R I A : Papers that applied artificial intelligence meth-

ods to the problem of privacy of IoT systems were included in our study.

Snowballing

The snowballing technique refers to the use of the reference list of an paper

or its citations to identify additional papers that might have been missed

by the search process [375]. This is typically used after the application

of the exclusion/inclusion criteria, so that the reference analysis is only

performed on the relevant papers that address the research questions of
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the literature review. As the reader might see, the snowballing technique

requires an extensive amount of time and effort: for this reason, we limited

ourselves to the application of the so-called backward snowballing, that is,

the scanning of the reference list of the papers selected.

Quality assessment

Before proceeding with the extraction of the data required to address

our research questions, we assessed the quality and thoroughness of the

retrieved resources to discard the papers that did not provide enough

details to be used in our study. Particularly, we defined a checklist that

included the following questions:

Q1. Are the artificial intelligence techniques clearly defined?

Q2. Are the privacy topics treated in the paper clearly defined?

Each question could be answered as “Yes”, “Partially”, “No”. We asso-

ciated a numeric value for each label better to assess the quality and

thoroughness of each source: the label “Yes” was associated to the value

‘1’, “Partially” to ‘0.5’, “No” to ‘0’. The overall quality score was computed

by summing up the score of the answers to the two questions, and the

articles with a quality score of at least 1 were accepted.

Data extraction

Once we had identified the set of sources to consider, we extracted the

information relevant to address our research questions. We defined the

data extraction form reported in Table 8.1. Besides the basic information

on the privacy topics treated by the paper or on the design/validation of

the artificial intelligence techniques, we also sought to extract data on

the dataset exploited and the programming language used to develop the

technique: these pieces of information could provide additional insights

into the characteristics of the considered papers. Also, the data extraction
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Table 8.1: Data Extraction Form
Dimension Attribute: Description

Privacy What kind of privacy concerns have been highlighted in the use of IoT devices?

Machine Learning Algorithms What kind of algorithms were used to tackle the problem?

Topics of Interest What are the main topics treated?

Programming Language What programming languages have been used to address this issue?

Training Strategy What is the strategy adopted to train the model?

Validation Techniques What kind of techniques were used to validate the model (if any)?

Dataset What dataset has been selected to train the Machine Learning model?

Evaluation Metrics What evaluation metrics has been used to evaluate the model? (e.g., F-score, Accuracy, Precision, Recall).

Limitation What are the limitations of current techniques?

form included a “Limitation(s)” field, through which we took note of the

possible limitations of the techniques assessed. It is important to remark

that the “Validation Techniques” field of the data extraction form was

voluntarily left optional, as not all the primary studies might have proposed

validations of the artificial intelligence techniques proposed.

Search Process Execution

Once we had defined the basic blocks of our systematic literature review,

we then proceeded with its execution. An overview of the execution is

presented in Figure 8.1, where we show how the number of primary stud-

ies considered varied when applying the various filters we defined. In

particular, the execution process worked as follows:

Table 8.2: Filters applied in the research queries.
Database Year Document Type Publication

Stage
Language Media

Format
Subject Area Source Type Results

IEEE 2011 - 2021 Conference Journal 486

Scopus 2011 - 2021 Conferences paper Final EN
Computer Science

Engineering
Conference Proceeding

Journal
443

ACM 2011 - 2021 Research Paper PDF 1,273

Total 2,202

A We run the search query against the three selected databases. In this

respect, it is worth remarking that each database requires its param-

eters to conduct the search process, e. g., in terms of the document

types to consider. For the sake of replicability, Table 8.2 summarizes

the parameters defined for each database. The search query output
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Research Query

ACM: 1273 
Papers

IEEE: 486 
Papers

Scopus: 443 
Papers

Total: 2202 First 
Selection: 247

Final 
Selection: 137 Snowballing 152 Papers 

pass all steps
152 Papers 

selected

Exclusion 
Criteria (Title, 

Abstract, 
Keywords)

Inclusion 
Criteria (Full 

Text)

15 Papers 
Found

Inclusion/
Exclusion 

Criteria Applied 
Again

Figure 8.1: Overview of the papers selection process.

a total amount of 2,202 hits: 1,273 for the ACM Digital Library, 486 for

IEEEXplore, and 443 for Scopus. The higher number of hits obtained

when querying the ACM Digital Library is motivated by the internal

mechanisms that the platform employs to match a query against

the content it makes available [42]: in particular, it does not limit

the search of each term of a query to the full content of an paper,

but also considers the metadata, hence providing a larger amount of

candidate relevant papers. In any case, we completed the first step

by downloading all the candidate papers and storing them in a local

environment for a quicker investigation.

B Each of the candidate papers entered the next phase, which con-

sisted of applying the exclusion criteria. We considered each paper’s

title, abstract, and keywords to decide on whether it should have

been discarded. If this is enough, we read the content of the paper.

Overall, 1,955 papers were excluded, and, therefore, 247 passed to

the next step.

C The inclusion criteria were considered. Also, in this case, the paper’s

first author acted as the inspector and applied the criteria defined

against the 247 papers. Unlike the previous step, the inclusion was

assessed by considering the full paper and not only the title, abstract,
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and keywords. In case of indecision, the inspector brought the case

to the attention of the other authors, who could provide feedback

and open a discussion that led to a final agreement. As a result, we

discarded an additional 110 sources, leading to a final number of

137 papers included in our systematic review.

D After collecting the relevant papers, the inspector applied the back-

ward snowballing procedure and identified potentially relevant can-

didates missed by the original search. Then, the inspector let the

additional sources pass through the exclusion/inclusion criteria.

Similar to what was previously done, the inspector requested the

feedback of the other authors whenever needed. The snowballing

procedure included 15 new sources, leading to a total of 152 papers.

E The next step is concerned with the application of the quality as-

sessment. This was a critical phase since we had to rate the papers

based on their clarity or the availability of enough information to

address our research questions. As a result, no paper was excluded,

and, therefore, all 152 papers passed the quality assessment.

F Lastly, we proceeded with the data extraction. Most of the infor-

mation required to address our research questions (i. e., , the AI

technique employed) was rather easy to collect. More problematic

was instead the analysis of the potential limitations. This required a

more careful and focused discussion. In particular, we analyzed (I)

the sections of the papers where potential limitations and threats to

validity were discussed and (II) the characteristics and properties of

each technique employed, trying to identify additional limitations.

The data extracted from the selected papers were then used to provide

an answer to our research questions. The following section overviews the

main findings of our analysis.
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8.3 A N A LY S I S O F T H E R E S U LT S

Before diving into the results addressing our RQs, it is worth reporting

some meta-information on the primary studies accepted for our system-

atic literature review.

Figure 8.2: Publication trend by year.

In the first place, Figure 8.2 depicts bar plots highlighting the number

of papers published by year. Looking at the figure, two elements might be

noticed. On the one hand, the publication trend recalls an exponential

function, which means that the interest in facing privacy in IoT systems
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using artificial intelligence techniques is rapidly and massively increasing.

This may indicate that several other papers will be published in the near

future. The publication trend further motivates our work, namely the need

for a systematic literature review that analyzes how artificial intelligence

techniques have been applied and validated in the field, other than which

are the key limitations that future research is called to address.

On the other hand, we can also notice that 50% of the papers (75) have

been published in 2020 [1, 3–5, 15, 18, 29–31, 40, 41, 43, 50, 54, 55, 61,

69, 86, 88, 89, 94, 97, 110, 123, 126, 127, 134, 149, 151, 152, 162, 164, 169,

178, 185, 191, 203, 208, 209, 213, 216, 220, 222, 224, 230, 238, 240, 246,

249, 256, 260, 285, 286, 289, 295, 298–300, 310, 320, 338, 343, 345, 362,

366, 380, 381, 386, 387, 396, 397, 399, 403, 404, 406]. While the astonishing

number of published material can be connected to the general exponential

publication trend, it also indicates how privacy is becoming more and more

pressing for researchers. A possible influencing factor is the significant

increase in terms of IoT devices acquired by users during the pandemic

years [315], which has naturally further increased the need for privacy-

preventing mechanisms.

An additional preliminary view on the characteristics of the primary

studies is concerned with the programming languages employed to devise

the artificial intelligence techniques. We noticed that not all the articles

explicitly mentioned the programming languages used. In some cases,

this information has been obtained by analyzing side information, i.e.,

references of third-party libraries, code snippets commented in the articles,

or manual analysis of replication packages. However, in 91 cases we could

not find any information to elicit the programming language adopted.

Figure 8.3 provides the results of this analysis. We identified PYTHON as

the key means enabling the definition of artificial intelligence techniques:

this was indeed used in 67% of the articles [4, 5, 15, 27, 30, 36, 55, 110, 134,

135, 149, 158, 160, 164, 167, 178, 184, 185, 191, 193, 199, 207, 216, 233, 248,

257, 270, 278, 279, 283, 289, 298, 314, 320, 330, 362, 380, 386, 396, 403, 404]

This result was somehow expected, as PYTHON is widely considered

as the main programming language for data science and machine learn-
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Figure 8.3: Programming languages used to devise the artificial intelligence tech-
niques proposed in the primary studies.

ing engineering, as it offers a large amount of data science libraries that

make the development of artificial intelligence techniques easier.6 Other

programming languages are less used. In 11% of the cases researchers

preferred a combination of multiple programming languages. In these

cases, different programming languages were used to implement different

steps of the artificial intelligence pipelines: as an example, [131] employed

the R toolkit to perform data cleaning operations and then relied on the

Weka library7—written in JAVA—to devise a machine learning solution.

Hence, such an analysis allows us to recommend the usage of PYTHON

for building novel solutions based on artificial intelligence to treat privacy

concerns in IoT: this solution would indeed offer an easier chance to build

6Top programming languages for data science and machine learning engineering:
https://towardsdatascience.com/top-programming-languages-for-data-scien
ce-in-2020-3425d756e2a7.

7The Weka toolkit: https://www.cs.waikato.ac.nz/~ml/weka/.

https://towardsdatascience.com/top-programming-languages-for-data-science-in-2020-3425d756e2a7
https://towardsdatascience.com/top-programming-languages-for-data-science-in-2020-3425d756e2a7
https://www.cs.waikato.ac.nz/~ml/weka/
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techniques that can extend the existing ones, e.g., by applying specific,

tailored mechanisms on top of the techniques proposed in literature, or

even compare the performance of the newly proposed techniques with

the existing ones.

ø Summary.

The problem of privacy detection and preservation in IoT using arti-

ficial intelligence is now, more than ever, relevant and massively ex-

plored by researchers. The publication trend is indeed exponential and

about 50% of the primary studies has been released in 2020. PYTHON

is the top programming language employed to build the artificial intel-

ligence techniques proposed in literature.

Figure 8.4: Topics frequency.
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Figure 8.5: N-Gram topics treated.

RQ1. On the privacy tasks tackled with the use of AI techniques.

To address RQ1, we elicited the privacy task(s) performed in the primary

studies. We labeled each paper with the set of tasks considered to enable

the analysis. Figure 8.4 reports the top-6 tasks performed in the primary

studies. For the sake of clarity, we focus the following discussion on these

tasks since these are the ones considered by at least 10% of the primary

studies. Nonetheless, we report in Figure 8.5 a word cloud that summarizes

the whole set of tasks considered.

N E T W O R K A N A LY S I S . The most prominent task is the one of Network

Analysis—24.4% of the primary studies (33) explicitly focused on that.

The authors of these primary studies highlighted a critical threat to pri-

vacy due to the fact that IoT devices typically share information without

secure protocols. For this reason, data might be easily stolen [167, 307,

308, 385, 404]. More specifically, the task aims at investigating the pres-
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ence of malicious traffic and/or activities on networks, e.g., the exchange

of vulnerable packages. Artificial intelligence models are typically used

to classify network traffic and identify sensitive or personal information

transmitted by IoT devices [3, 16, 17, 43, 50, 55, 69, 88, 97, 127, 158, 160,

165, 167, 184, 196, 207, 210, 248, 256, 279, 292, 295, 307, 308, 310, 320, 354,

362, 368, 385, 404, 407]. For instance, Fei et al. [97] collected traffic data

from the network environment to feed a Random Forest algorithm able

to classify an abnormal traffic potentially leading to a denial of service.

In a very similar fashion, the other approaches proposed in literature

collect information from various sources to train machine learners able

to classify malicious inputs to a network.

AT TA C K D E T E C T I O N . This task has been taken into account by 23.7% of

the primary studies (32). It refers to the possible detection of malicious

actions. More particularly, we identified two main use cases: “Intrusion

Detection” and “Anomaly Detection”. The former consists of the defini-

tion of a hardware or software component to detect possible attacks on

an IoT device. The intrusion detector analyzes the network traffic and

pinpoints possible suspicious activities, like phishing and ransomware.

To perform this action, the authors typically used artificial intelligence to

analyze this traffic, searching for anomalous patterns that can indicate

an intrusion on the system [7, 25, 41, 110, 249, 283, 294, 298, 333, 338,

401]. The latter use case, i.e., “Anomaly Detection”, may be seen as a

sub-category of the ”Intrusion Detection” one: the purpose, indeed, is

exactly the same but with a fundamental difference due to the methodol-

ogy applied to identify malicious actions. While the “Intrusion Detection”

analyzes the signatures of known attacks or possible deviations from

normal traffic, “Anomaly Detection” relies on statistical models to verify

the incoming or outgoing traffic [26, 27, 93, 131, 135, 169, 215, 263, 329,

379]. It is worth noting that, in some cases, the authors of the primary

studies did not explicitly indicate the specific use case considered, i.e.,

they simply refer to “Attack Detection” (e.g., [1, 5, 15, 126, 154, 178, 185,

246, 285, 397, 409].). For this reason, we grouped “Intrusion Detection”

and “Anomaly Detection” under the “Attack Detection” task.
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F R A M E W O R K B U I L D I N G . Building a framework to characterize privacy

concerns is the focus of 25 studies [30, 54, 89, 123, 155, 189, 209, 214, 216,

220, 223, 230, 238, 240, 270, 286, 289, 299, 314, 366, 367, 381, 387, 389,

405]. A typical use case is the creation of frameworks that can be then

used to experiment new mechanisms to train machine learning models

in a distributed environment [30, 89, 123, 214, 216, 220, 238, 240, 270,

286, 289, 299, 366, 381, 387, 405]. The framework building consists of

the design and implementation of usable tools or pipeline that combine

multiple artificial intelligence algorithms to detect privacy issues or pre-

serve privacy. As an example, Meurish et al. [238] devised a decentralized

and privacy-by-design platform that loads confidential artificial intelli-

gence models into a trusted execution environment, hence protecting

users from possible privacy concerns. On a similar note, Wang et al. [366]

defined a federated machine learning approach that enables users to

deploy complex clustering problems into the cloud.

U S E R AU T H E N T I C AT I O N . 20 primary studies defined new secure au-

thentication mechanisms [40, 52, 61, 62, 92, 96, 99, 111, 124, 132, 143,

151, 190, 199, 222, 224, 233, 311, 325, 396]. As an example, this category

refers to the definition of person authentication tools that exploit biomet-

ric sensors: this is especially true in the healthcare field, where biometric

sensors are used to monitor patients through the measurement of the

blood pressure, heart rate, and others; afterward, the collected parame-

ters are used to generate a unique identifier that can be used to access a

system or in a reserved area [40, 52, 96].

M A LW A R E D E T E C T I O N . This task was the subject of 13 primary studies

and refers to the creation of agents that analyze the processes that exe-

cute on a host machine to identify possible malware. The most common

task consisted of the identification and/or classification [4, 6, 22, 35, 79,

86, 130, 162, 191, 193, 278, 305, 343] of the various types of malware.

More particularly, we recognized two different trends. First, the use of

pattern mining to detect malicious applications. For instance, Darabian

et al. [79] used sequential pattern mining to detect the most frequent
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opcode sequences of malicious IoT applications; these sequences were

then used to distinguish malicious from benign IoT applications. Second,

the use of supervised machine learning approaches to classify malware.

As an example [6] trained a Random Forest algorithm with malware data

of ANDROID applications in order to identify malicious mobile apps.

P R I VA C Y- P R E S E R V I N G S C H E M E . This task was subject of 12 primary

studies and refers to the definition of new protocols and schemes to

improve privacy. The authors of the primary studies typically include

blockchain or similar mechanisms to keep data safe [142, 160, 164, 208,

213, 241, 260, 300, 384, 386, 399, 402]. An example is represented by the

work of Zhao et al. [402], who devised a blockchain-based federated

learning approach for IoT devices, where the data collected from mul-

tiple sensors are stored within a privacy-preserving blockchain before

being consumed by machine learning models.

Other tasks are much less considered, perhaps because they represent

emerging topics or because there are few datasets that may be used to

perform them. We further analyze this in the context of the next RQs.

ø Key findings of RQ1.

The results of RQ1 indicate six tasks that are often considered for the

application of artificial intelligence techniques: (1) “Network Analysis” ;

(2) “Attack Detection” ; (3) “Framework Building” ; (4) “User Authentica-

tion” ; (5) “Malware Detection”, and (6) “Privacy-Preserving Scheme”. A

common approach is that of using artificial intelligence techniques on

networks in order to detect possible reserved information exchanged

or even the vulnerable IoT devices in a certain environment.

RQ2. On the IoT domains where AI techniques have been applied.

When addressing RQ2, we needed to elicit the domain from each of the

considered primary studies. In this respect, we labeled each paper with one

or more domains: in cases where the domain was not explicitly reported
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by the authors, we used the label ”Smart Environment” : this indicates

that a certain approach is generic enough to be used in more domains.

The results of this analysis are depicted in Figure 8.6. As reported, the vast

Figure 8.6: IoT domains where the artificial intelligence methods have been ex-
perimented.

majority of the primary studies do not explicitly indicate a use case domain

for the artificial intelligence approach proposed or experimented. This

was the case for 93 papers (61.8%). In most of these studies, the authors

limit themselves to generic discussions of IoT environments where their

approach might work. This indicates that most techniques are agnostic

and can be applied for a variety of purposes. Typically, these have to do

with domains like smart factories, military fields, smart home, healthcare,

and more [7, 26, 43, 61, 134, 199, 238, 278].
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Figure 8.7: Definition of ”Smart Environment”, according to the analysis of the
papers that do not explicitly report the domains.

Figure 8.7 reports a taxonomy of the ”Smart Environment” domain,

which was built after analyzing the papers that attempted to devise agnos-

tic techniques. Besides the generic smart environment domain, 24 studies

(15,8%) discussed techniques for smart home, while other 20 (13.2%) pro-

posed approaches to manage healthcare-related issues. There are two

likely reasons behind this result. On the one hand, the research interest

in smart home might be driven by the increase of IoT devices that can

be used in such domain. As an example, devices like AMAZON ALEXA or

GOOGLE HOME are becoming affordable and popular. As a consequence,

the privacy of smart home devices represents a critical challenges to face.
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On the other hand, the healthcare domain has often caught the attention

of researchers, given that IoT techniques can be used to monitor patients

and exchange personal data to speed up diagnoses and communications.

Table 8.3: Frequency of artificial intelligence techniques used in literature to deal
with privacy concerns in IoT systems.

Artificial Intelligence Technique Smart Environment Smart Home Healthcare Industrial Smart Cities Sum

SVM 21 10 6 1 2 50

Random Forest 17 10 5 2 1 38

K-Nearest Neighbours (k-NN) 10 7 8 2 27

Decision Tree 8 8 5 23

Convolutional Neural Network (CNN) 11 2 4 1 19

Naive Bayes 6 4 5 1 1 18

Multilayer Perceptron (MLP) 9 3 2 14

Logistic Regression 8 2 1 13

Neural Network 6 1 3 13

K-Means 3 2 2 1 7

Other domains are, instead, less considered so far and represent emerg-

ing topics. The application of artificial intelligence to smart industry, for

energy considerations or industry [16, 26, 30, 35, 54, 92, 97, 155, 178, 185,

207, 210, 213, 224, 299, 308, 397, 399, 406] was indeed the object of recent

papers published in 2020. This suggests that the research community is

trying to approach domains that were not typically targeted.

ø Key findings of RQ2.

So far, most of the proposed techniques target multiple smart envi-

ronments and were designed to be generic enough to work in various

domains. At the same time, smart home and healthcare are established

contexts where privacy concerns are always challenging. Our literature

review also identified some emerging domains for artificial intelligence,

like, for instance, the application of smart techniques for electricity

power reduction.
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Figure 8.8: Taxonomy of the machine learning techniques used in literature to
deal with privacy concerns.
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Figure 8.9: Taxonomy of the deep learning techniques used in literature to deal
with privacy concerns.
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Figure 8.10: Use cases where the supervised and unsupervised learning tech-
niques have been used.
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Figure 8.11: Frequencies of artificial intelligence tasks with the most six tasks
considered.
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Figure 8.12: Use cases where the deep learning techniques have been used.

RQ3. On the families of artificial intelligence algorithms used to deal with

privacy in IoT systems.

With RQ3 we analyzed the primary studies in order to identify the artificial

intelligence techniques that were used and label them according to their
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characteristics. Figures 8.8 and 8.9 show the results of our analysis, while

Table 8.3 overviews the number of primary studies that adopted each tech-

nique, also indicating the domain where these have been experimented.

Shallow machine learning approaches, i.e., approaches that learn from

data described by predefined features [382], are more frequently devised.

Supervised techniques have been used in various forms: these are con-

nected to the definition of prediction models that can distinguish the

characteristics of an unseen instance based on a training base. According

to our analysis, a number of algorithms have been proposed, like Random

Forest [1, 3–7, 15, 16, 25, 26, 40, 55, 61, 97, 110, 135, 143, 154, 160, 169, 191,

196, 199, 210, 230, 246, 248, 249, 257, 279, 292, 295, 314, 320, 329, 369, 379],

Support Vector Machines[3–5, 7, 15, 22, 25–27, 52, 55, 61, 62, 79, 93, 110,

124, 130–132, 135, 143, 144, 160, 165, 169, 184, 191, 199, 203, 210, 230, 246,

248, 278, 279, 283, 285, 295, 298, 308, 325, 338, 343, 345, 368, 369, 385–387,

389, 396, 397, 399, 401–406]. None of the surveyed papers provided motiva-

tions leading to the selection of these algorithms. Nonetheless, the higher

amount of primary studies proposing supervised learning techniques is

likely due to the characteristics of the problems considered: as a matter of

fact, most researchers have been working on the definition of classification

and/or regression approaches to identify privacy concerns, which calls for

the adoption of supervised machine learning techniques. An overview of

the privacy tasks considered with each of the machine learning techniques

is provided in Figure 8.10. As shown, typical use cases are the authentica-

tion problem and the network traffic analysis. The authors that considered

this authentication problem typically applied supervised learning algo-

rithms to classify authorized or unauthorized accesses. Network analysis

was instead approached by collecting previous network data and features

in order to devise prediction models that could discriminate the likelihood

that the current traffic is anomalous and may therefore lead to security

threats for an IoT device.

A lower amount of studies focused on unsupervised learning. Precisely,

the use of clustering, and the k-Means algorithm in particular, allowed

researchers to devise approaches able to group together the common
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properties that may characterize the privacy concerns treated. Clustering

algorithms were used to cover two macro-areas: data classification and

devices aggregation. The former refers to clustering to classify devices or to

perform network traffic tasks. The latter refers to the definition of common

features or parameters related to IoT devices [7].

During our analysis, we found that the clustering algorithms were ei-

ther used as an alternative to supervised learning algorithms [7] (e.g., to

classify or aggregate devices based on some criterion for instance defined

commons features or parameters related to IoT devices) or in combination

with them [26, 127, 131, 132, 233, 238, 366, 369, 406]). As an example, the

studies performed by Anton et al. [26] and Hamza et al. [131] employed

clustering to classify abnormal network traffic, hence defining unsuper-

vised approaches that could identify possible anomalies on a network. At

the same time, an example of combination was presented in the paper

by Hag et al. [132], who focused on the problem of occupancy detection,

i.e., the classification of whether a room is occupied by a person. In this

case the authors used time-stamped images of environmental variables

like temperature, humidity, light, CO2, to assess the accuracy of a user

authentication approach. When gathering the images, the authors applied

a k-means clustering algorithm to define a first grouping of normal and

malicious room occupancy. These clusters were used to obtain labels that

were later exploited to train an SVM algorithm.

A more recent trend is the adoption of deep learning. We observed that

the primary studies that used this type of learning were all published in

2020, indicating a growing interest.

Figure 8.11 provides a conclusive overview on the artificial intelligence

techniques used in literature. In particular, the figure connects the top-6

tasks coming from the results of RQ1 to the artificial intelligence tech-

niques adopted to solve them. Each task is depicted with a different color;

this color characterizes the edges that connect each task to the techniques

used in literature. The edges are weighted based on the amount of primary

studies using a technique to address a certain task. For instance, the “Net-

work Analysis” task is reported in red. The red edges indicate that the task
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has been addressed in 13 papers with the use of SVM, in 11 papers with

Random Forest, in 7 papers with KNN, and so on. From the figure, we can

confirm that Support Vector Machine has been the most used artificial

intelligence algorithm (48 times) to address the majority of the privacy

tasks investigated by researchers so far.

Figure 8.12 overviews the tasks faced by researchers through the use of

deep learning. To provide an example of a common task for which deep

learning has been used, let consider the OCCLUMENCY framework devel-

oped by Lee et al. [189]. This is a cloud-driven solution designed to protect

user privacy without reducing the benefits of cloud resources. It is common

for IoT applications to collect and share sensitive information through

a cloud platform. The OCCLUMENCY framework uses deep learning to

encrypt that information without increasing the latency of the cloud plat-

form’s response. More in general, we noticed that deep learning had been

experimented for tasks previously treated with shallow machine learning

techniques also to verify how deep learning approaches can improve the

prediction performance of traditional shallow learning algorithms.

As an outcome of our analysis, there are two main observations to make.

First, most researches focused on the adoption of supervised learning,

while other types of artificial intelligence techniques seem to have been

neglected. As such, our systematic literature review suggests that addi-

tional analyses might focus on unsupervised learning and orthogonal

techniques, like evolutionary algorithms or pattern recognition. Secondly,

we identified only three empirical investigations aimed at comparing the

various forms of artificial intelligence techniques employed [36, 369, 403].

In this sense, we highlight further possibilities for the empirical software

engineering community, which might exploit our literature survey’s out-

come to design and execute empirical investigations into the matter.
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ø Key findings of RQ3.

The results obtained from RQ3 indicate that the large majority of pri-

mary studies focused on supervised learning techniques to deal with

privacy concerns. Yet, we highlight the lack of analyses on other types

of artificial intelligence approaches, other than the lack of empirical

studies to compare the existing techniques.

Table 8.4: List of datasets used to device or experiment the artificial intelligence
techniques proposed in literature.
Dataset Category Task Paper Link

Comparison [29, 144, 384]

Network Analysis [158, 404, 407]

Framework [89, 209, 214, 216, 240, 270, 286, 309, 367, 381]

Privacy Preserving Scheme [208, 380, 399, 402]

MNIST Handwritten

User Authentication [396]

yann.lecun.com/exdb/mnist/

Comparison [29, 384]

Network Analysis [69, 407]

Framework [240, 270, 286, 367, 381]
CIFAR-10 Image Classification & Object Detection

Privacy Preseving Scheme [208]

www.cs.toronto.edu/~kriz/cifar.html

KDD Cup 99 Cybersecurity Attack Detection [215, 329, 333, 401] www.kdd.org/kdd-cup/view/kdd-cup-1999/Data

DS2OS Cybersecurity Attack Detection [135, 169, 185] www.kaggle.com/francoisxa/ds2ostraffictraces

Comparison [403]
Adult Personal Information

Network Analysis [127]
www.kaggle.com/wenruliu/adult-income-dataset

Secure Training [134]
Heart Disease Healthcare

Network Analysis [308]
archive.ics.uci.edu/ml/datasets/heart+disease

Network Analysis [368]
CASIA-WebFace Face Recognition

Framework [309]
paperswithcode.com/dataset/casia-webface

Comparison [36]
CTU-13 Cybersecurity

Malware Detection [305]
www.stratosphereips.org/datasets-ctu13

Fashion MNIST Object Detection & Image Classification Framework [214, 270] www.kaggle.com/zalando-research/fashionmnist

Attack Detection [379]
GeoLife Tracking GPS

Framework [238]
www.microsoft.com/en-us/download/details.aspx?id=52367

RQ4. On the datasets employed by the artificial intelligence methods.

After providing an overview of the tasks, domains, and families of tech-

niques employed to deal with privacy concerns in IoT systems, we started

our fine-grained analysis of the design and evaluation of these techniques.

With RQ4, we collected data and characteristics of the datasets used by the

primary studies.

Table 8.4 reports the list of datasets, along with information on their

category, the tasks for which they were employed, and where to find them.

Figure 8.13 shows top-10 frequency of use of each dataset.

We observed that most of the primary studies (42%, 64 papers) relied

on “MINIST”, while the others have been exploited to a lower extent. More

specifically, let us comment on those datasets:

yann.lecun.com/exdb/mnist/
www.cs.toronto.edu/~kriz/cifar.html
www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
www.kaggle.com/francoisxa/ds2ostraffictraces
www.kaggle.com/wenruliu/adult-income-dataset
archive.ics.uci.edu/ml/datasets/heart+disease
paperswithcode.com/dataset/casia-webface
www.stratosphereips.org/datasets-ctu13
www.kaggle.com/zalando-research/fashionmnist
www.microsoft.com/en-us/download/details.aspx?id=52367
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Figure 8.13: Frequency of use of the datasets exploited by the primary studies.

M N I S T. This is a dataset of handwritten digits created for the specific pur-

pose of experimenting ML techniques. It contains about 60,000 examples

and a test set of 10,000 samples. It was used in 42% of the papers [29, 89,

144, 158, 208, 209, 214, 216, 240, 270, 286, 367, 380, 381, 384, 396, 399, 402,

404, 407], and is particularly indicated to test authentication techniques

that rely on biometric data. For instance, Jiang et al. [158] experimented

with biometric data obfuscation techniques to verify how the digits clas-

sification performance of a deep neural network vary with respect to the

case where the network is trained with the original, cleaned digits.

C I F A R - 1 0 . It consists of 60,000 images categorized in 10 classes. The

dataset has been created for the specific case of machine learning, as

it contains around 6,000 images for each class and is released so that

a researcher can use 50,000 images for training and 10,000 images for
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testing machine learning techniques. We have found ten papers that

used this dataset [29, 69, 208, 240, 270, 286, 367, 381, 384, 407]. Typically,

it is used to experiment classification algorithms aiming at addressing

the privacy concerns of images and videos, like the problem of under-

standing whether sensitive data can be derived from fragments of images

captured by sensors [240, 381, 407].

K D D C U P 9 9 . This dataset contains raw signals obtained in nine weeks

from the TCP dump. The dataset includes 24 training attacks and 14 types

of test data. This dataset is used for the intrusion detection learning task

and to build supervised algorithms that could learn from these examples

to predict the emergence of intrusion attacks [215, 329, 333, 401].

D S 2 O S . The dataset contains traffic traces obtained in IoT environments

and is typically used to verify anomaly detection algorithms [135, 169,

185]. For instance, Hasan et al. [135] employed anomaly detection on

this dataset to identify possible attacks in IoT sites.

A D U LT D ATA S E T. It contains information about people, including the

annual income. This is typically exploited by researchers interested in

building and/or assessing techniques to detect personal data losses.

Similar to the cases above, the dataset seems to be particularly useful for

classification algorithms, given that it reports labeled data that can be

used for training purposes [127, 403].

B R E A S T C A N C E R W I S C O N S I N D ATA S E T. This dataset is computed from

a breast mass digitization image of fine needle aspirate (FNA). The

dataset contains 569 instances and 32 attributes (including symmetry,

concave points, area). Researchers have been using the dataset to experi-

ment with supervised classification techniques that aim at identifying

potential personal data losses [134, 308].

C A S I A - W E B F A C E . The dataset contains 494,414 face images of 10,575

real identities. This is typically used for face verification and face identi-

fication tasks [309, 368]. For instance, Wang et.al. [368] used this dataset



8.3 A N A LY S I S O F T H E R E S U LT S 151

to experiment with a combination of Deep Neural Network and Support

Vector Machines able to analyze video streams and identify and blur

faces based on privacy policies, obtaining an accuracy rate close to 92%.

C T U - 1 3 . The dataset contains botnet traffic captured in regular traffic

and background traffic. Researchers used the dataset for malware detec-

tion tasks [36, 305]. As an example, Bansal et.al. [36] employed multiple

machine learning algorithms, including Naive Bayes and Neural Net-

works, to detect botnets, obtaining F-1 scores up to 88%.

F A S H I O N M N I S T. This dataset includes ZALANDO’s article and contains

about 60,000 training set images and 10,000 test set examples. It is di-

vided into 10 classes (including T-shirts, pullovers, and coats), and each

category contains 10,000 examples [214, 270]. The studies that exploited

this dataset were interested in building techniques that might prevent

privacy leaks due to the identification of people from their clothes.

G E O L I F E . This dataset contains GPS trajectories collected in over three

years. The dataset includes information about the time-stamped and

information about the latitude, longitude, and altitude [238, 379]. It has

been used to train and test techniques that could prevent the localization

of people based on their coordinates.

To broaden the scope of the discussion, it is worth focusing on the tasks

for which each of the above datasets has been used—Table 8.4 reports the

details of our analysis. We could first notice that the “MINIST” dataset

has been used by multiple authors to pursue several tasks: authors opted

for it when performing comparisons among artificial intelligence tech-

niques [29, 144, 384], building frameworks [89, 209, 214, 216, 240, 270, 286,

309, 367, 381] or experimenting with network analysis approaches and

authentication mechanisms, other than verifying the accuracy of privacy-

preserving schemas. Similar considerations and conclusions can be drawn

for the “CIFAR-10” dataset. These observations highlight the flexibility

of the datasets with respect to multiple tasks. On another note, the other
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datasets have been used in a more restrictive manner and mostly for deal-

ing with the task of “Attack Detection”. This is even the only task considered

when employing the “DS20S” and “KDD Cup 99” datasets.

While we already discussed about the availability of only a few datasets

for experimenting with artificial intelligence techniques, some additional

observations should be made. The authors of the “Fashion MNIST” dataset

openly criticized the original “MNIST” dataset. Indeed, its structure al-

lows both traditional and deep learning algorithms to achieve very high

accuracy without providing enough insights into the actual validity of the

predictions performed. In other words, the dataset is built in a biased way

that impacts the analysis of the real capabilities of the experimented tech-

niques. Other data scientists and practitioners also remarked this. In April

2017, a GOOGLE BRAIN research scientist and deep learning expert, Ian

Goodfellow, advised migrating to other datasets. Later on, another deep

learning expert, François Chollet, explained that the “MNIST” dataset is

not good at representing everyday tasks. These considerations, along with

the consideration that a large number of primary studies employed this

dataset, allow us to claim that the research in privacy of IoT devices might

require a critical re-assessment. This is further confirmed by the fact that

19 primary studies evaluated the proposed approaches only in terms of ac-

curacy [29, 89, 144, 158, 208, 209, 214, 216, 270, 286, 309, 367, 380, 381, 384,

396, 402, 404, 407], hence possibly biasing the conclusions drawn—more

details are reported when addressing RQ6.

Another discussion point concerns with the intrinsic characteristics of

the datasets. When addressing RQ4, we analyzed whether and to what

extent the available datasets are balanced. Data balancing is a crucial data

quality aspect to take into account while selecting a suitable dataset to

create and/or validate privacy approaches [39]. The availability of bal-

anced datasets, namely of datasets for which there are a similar amount

of data for each class, might notably affect the learning capabilities of

artificial intelligence techniques [39], other than implying the definition of

methodological steps that aim at facing this potential learning bias.
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Table 8.5: Classify balanced or unbalanced datasets

Dataset Balanced

MNIST Yes

CIFAR-10 Yes

KDD Cup 99 Yes

DS2OS No

Adult No

Breast Cancer Wisconsin DataSet (BCWD) No

CASIA-WebFace No

CTU-13 No

Fashion MNIST Yes

GeoLife No

Table 8.5 summarizes our analysis on the data balancing of the consid-

ered datasets. The three most used datasets are balanced, while “DS20S”

and “Breast Cancer Wisconsin DataSet” are not. Researchers can use this

information to take appropriate data balancing considerations during the

design of their studies, other than exploit it to analyze deeper the validation

of the proposed techniques (RQ6).

ø Key findings of RQ4.

We point out the need for further open datasets that may cover a larger

variety of privacy concerns. About 40% of the papers conducted experi-

ments on the “MNIST” dataset (an Handwritten dataset). Nonetheless,

it has been criticized, as it may lead to biased interpretations of the

results obtained by artificial intelligence techniques. As a consequence,

the conclusions drawn by most of the papers published so far might

need to be re-assessed.
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Figure 8.14: Validation techniques used by the primary studies.

RQ5. On the validation strategies employed to assess the artificial intelli-

gence methods.

In the context of RQ5 we analyzed the validation strategies adopted when

assessing the capabilities of artificial intelligence methods devised to deal

with privacy concerns in IoT systems. As clarified in Section 8.2, not all

the primary studies validated the proposed techniques. This was the case

for 21 papers [7, 50, 92, 99, 111, 142, 149, 152, 155, 207, 223, 224, 233, 240,

289, 299, 330, 366, 385, 386, 406]: hence, this research question takes the

validation procedures of 131 primary studies into account. Figure 8.14

shows the results of our analysis. 55.6% of the studies (35) that explicitly

indicate the validation technique used the so-called k-fold cross validation

[3, 4, 6, 16, 17, 29, 35, 40, 55, 62, 110, 124, 130, 132, 135, 143, 190, 191, 199,

210, 238, 246, 248, 257, 285, 292, 295, 300, 308, 320, 329, 343, 345, 354, 369],

with a value of k equals to 5 or 10. This is a method that can be used to

estimate the performance of machine learning algorithms: it randomly

splits a dataset into k groups called folds, and (I) takes one fold as test and

k-1 folds as training, (II) fits a machine learning model and executes it

on the current test fold, and (III) iterates the procedure until all unique

folds have been considered exactly once as test set. Upon completion of
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the validation procedure, the results obtained are summarized employing

statistical indicators like, for instance, the mean number of true positive

instances identified over the various validation runs.

When analyzing the primary studies, we could not identify the specific

reasons leading researchers to use this validation procedure. We cannot

provide insights on whether its adoption was the most suitable or whether

other validation procedures would better fit the specific problems treated

in the studies. The only exception to this general discussion concerns the

work by Meurisch et al. [238]. The study proposed an AI-based privacy-

preserving mechanism to overcome the need to continuously share user

data streams in the cloud, which was later validated through 10-fold cross-

validation. The proposed approach employs temporal data, namely data

collected over a given time frame and that, for this reason, follows a tem-

poral order. The application of cross-validation in this scenario risks bias

the interpretation of the results 8. Indeed, the cross-validation might acci-

dentally lead future data to be used for training past data, causing a form

of data leakage that interprets results biased. Unfortunately, we could not

understand if and how the authors have mitigated the risks connected

to the adoption of cross-validation. Yet, we can argue that more details

on the rationale and the methodology adopted to validate the artificial

intelligence methods would be required to properly assess the validity of

the insights provided.

Besides cross-validation, another popular strategy is the so-called ran-

dom split or percentage split. This randomly splits the dataset into training

and test sets, e.g., retaining 80% for training and 20% for testing [5, 69, 89,

96, 134, 151, 185, 196, 209, 223, 283, 305, 310, 333, 380, 386, 403]. Similarly

to the discussion above, the primary studies that employed this validation

did not explicitly mention the rationale behind its use nor the possible

threats that this validation might cause.

The last 29 primary studies used different strategies, which we grouped

as “Other” in Figure 8.14. These studies employed various validation meth-

ods, e. g., the Monte Carlo cross-validation [230].

8https://medium.com/@soumyachess1496/cross-validation-in-time-series-
566ae4981ce4
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Table 8.6: Datasets used and the training/validation strategies employed.

Dataset Training/Validation Strategy

MNIST K-Fold Cross-Validation, Random Split

CIFAR-10 K-Fold Cross-Validation, Random Split

KDD Cup 99 K-Fold Cross-Validation

DS2OS K-Fold Cross Validation, Random Split

Adult Random Split

Breast Cancer Wisconsin DataSet (BCWD) K-Fold Cross-Validation

CASIA-WebFace Other

CTU-13 Other, Random Split

Fashion MNIST Not specified

GeoLife K-Fold Cross Validation

ø Key findings of RQ5.

Cross-validation and random split are the two most common valida-

tion procedures in the literature. However, the methodological choices

behind selecting these strategies are often unclear or unspecified. This

can lead to biased interpretations of the performance of artificial intel-

ligence methods. Therefore, we argue for more detailed reporting to

enhance the rigour, reproducibility, and replicability of research.

RQ6. On the evaluation metrics employed to assess the AI methods.

The last perspective of our study was concerned with the evaluation met-

rics employed to measure the performance of the artificial intelligence

techniques proposed in the literature.

The results for RQ6 are plotted in Figure 8.15. We found that a large quan-

tity of papers only relied on the accuracy metric[5, 6, 16, 17, 29, 30, 40, 41,

55, 61, 69, 86, 88, 89, 96, 123, 127, 132, 144, 158, 160, 167, 178, 184, 189, 190,

196, 203, 208–210, 214, 216, 238, 246, 257, 260, 270, 286, 294, 300, 308, 309,

311, 325, 338, 354, 362, 367, 368, 380, 381, 384, 387, 396, 402–404, 407], that

is, the total amount of correct predictions with respect to all the predictions
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Table 8.7: Evaluation metrics used when working on unbalanced datasets.
Paper Dataset Evalation Metrics

Attack and anomaly detection in IoT sen-
sors in IoT sites using machine learning
approaches

DS20S Accuracy, Precision, Recall, F1-
Score, Roc Curves

A Novel Attack Detection Scheme for
the Industrial Internet of Things Using a
Lightweight Random Neural Network

DS20S Accuracy, Precision, Recall, F1-
score

Ensemble Learning for Detecting Attacks
and Anomalies in IoT Smart Home

DS20S Accuracy, Precision, Recall, F1-
Score

Preserving User Privacy for Machine
Learning: Local Differential Privacy or
Federated Machine Learning?

Adult Accuracy

A Differentially Private Big Data Nonpara-
metric Bayesian Clustering Algorithm in
Smart Grid

Adult Accuracy

Privacy-Preserving Support Vector Ma-
chine Training Over Blockchain-Based En-
crypted IoT Data in Smart Cities

Breast Cancer Wisconsin
DataSet (BCWD)

Accuracy

Privacy-preserving k-nearest neighbors
training over blockchain-based encrypted
health data

Breast Cancer Wisconsin
DataSet (BCWD)

Accuracy, Precision, Recall

output. In other cases, the primary studies used a combined approach, for

instance by computing accuracy and precision, recall and precision, and

so on. In any case, there are two observations to make on the choice of the

evaluation metrics. In the first place, and similarly to the discussion done

in RQ5, most of the surveyed studies did not report on the rationale for

using these metrics nor on their suitability for the considered problem. As

an example, let consider the case of accuracy. By definition, the value of

the metric increases as the number of both true positives and negatives

increases. Some of the datasets currently available are strongly unbalanced

and contain only a few elements characterizing privacy issues—this is, for

example, the case of the “Adult” and “Breast Cancer Wisconsin DataSet”

discussed in RQ4. For these datasets, one is reasonably interested in as-

sessing the performance of artificial intelligence techniques with respect

to their capabilities in correctly predicting the privacy issues appearing

in the minority class of the dataset. Nonetheless, training an AI-based

solution with only a few instances of the class of interest might lead the

approach not to properly learn how to classify them. On the contrary, the

approach might be biased toward the classification of the majority class,
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Figure 8.15: Evaluation Metrics Techniques.

namely the set of instances that do not present any privacy concern. As a

consequence, measuring the accuracy metric might provide a wrong view

of the performance, since the metric tends to reward the approach inde-

pendently from which class it is able to correctly predict. High accuracy

values can therefore indicate that the artificial intelligence approach is

able to correctly predict the majority class, which is the least interesting.

We could not find considerations of this type in the primary studies consid-

ered and, unfortunately, this might have had an impact on the conclusions

drawn by various studies. More specifically, Table 8.7 reports the primary

studies that have worked on unbalanced datasets; the last column of the

table also reports the evaluation metrics considered. As it is possible to

observe, all of them relied on the accuracy—for some of them, this was

the only metric considered—but, perhaps more importantly, only a few

assessed the performance of the techniques in a more comprehensive

manner through other metrics. A second point of discussion is still related
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to the relation between the datasets exploited and the metrics used for

evaluation. Even the primary studies that worked on balanced datasets

typically relied on the accuracy. While in these cases the use of accuracy

was more reasonable, some peculiarities of the datasets might have influ-

enced the choice of the evaluation metric. For instance, as discussed in

RQ4, most of the primary studies relied on the “MNIST” dataset, which

turned to be somehow biased toward accuracy, i.e., as already explained,

the major criticism made was concerned to the fact that any AI-based

technique can easily reach high accuracy levels on this dataset. As such,

it is likely to believe that a re-evaluation of the techniques proposed in

literature might be beneficial for the research community in order to more

appropriately understand the actual value of those techniques.

ø Key findings of RQ6.

23% of the primary studies only used accuracy to evaluate the quality of

the artificial intelligence techniques. However, the characteristics of the

datasets might make them biased toward accuracy, implying a biased

interpretation of the real capabilities of the proposed techniques.

8.4 T H R E AT S T O VA L I D I T Y

As any other SLR, ours has some limitations that may have threatened the

validity of the reported findings. This section discusses them along with

the mitigation strategies employed to address them.

L I T E R AT U R E S E L E C T I O N . A critical challenge for a systematic literature

review consists of identifying a complete set of papers to enable a com-

prehensive overview of the state-of-the-art. In this respect, we have first

defined a search query having the goal of retrieving as many papers

related to the use of artificial intelligence for dealing with privacy of

IoT systems as possible without any temporal limitations. This choice

has implied a higher effort in terms of manual analyses, we preferred it

for the sake of completeness. Furthermore, we identified synonyms or
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alternative spellings of terms typically used in literature when defining

the search query. In addition, we checked the presence of the search

terms within existing systematic literature reviews on IoT privacy to find

possible additional terms. To further increase the completeness of our

study, we also conducted a backward snowballing session on the papers

that passed the exclusion/inclusion criteria. Combining these actions

makes us confident of the completeness of the literature selection. Nev-

ertheless, for the sake of verifiability and replicability, we have provided

as additional contribution an online appendix reporting all steps and

intermediate results of our analyses [371].

L I T E R AT U R E A N A LY S I S A N D S Y N T H E S I S . Upon completion of the se-

lection process, we applied specific exclusion criteria intending to filter

out papers that could not contribute or could provide a limited contribu-

tion toward the summarization of state-of-the-art related to the defined

research questions. Moreover, we did not limit the selection of primary

studies to those that successfully passed the inclusion criteria, but also

conducted an additional quality assessment to verify their actual suit-

ability to our purposes. Such a manual assessment has further limited

the risk of including resources that did not fit our purposes.
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A U T O M A T E D S T A T I C A N A L Y S I S T O O L S F O R

V U L N E R A B I L I T Y D E T E C T I O N I N A N D R O I D A P P S

9.1 I N T R O D U C T I O N

The last decades and, most notably, the recent years have seen a drastic

change in the way people communicate and interact among them. Around

80% of the global population owns a smartphone [150] and about 70%

of these smartphones rely on the ANDROID operating system [243]. The

diffusion of this operating system (OS) is favored by multiple factors, in-

cluding the availability and marketing of mobile apps through the online

app store [227]. In this context, previous research has pointed out that

ANDROID apps can be affected by severe vulnerabilities that can impact

both user privacy and security [100, 250, 365]. For this reason, several

automated static analysis tools have been proposed to detect security con-

cerns and assist mobile developers in improving their applications [179].

Nevertheless, in our research, we observed a lack of knowledge about the

real support provided by these tools. In particular, it is unclear the set

of problems that these tools can detect and how they behave when de-

tecting vulnerabilities, e.g., whether their analysis fails in certain cases,

the most common vulnerabilities identified, and to what extent different

tools cover different vulnerabilities. An improved understanding of these

aspects is crucial to let developers be aware of what kind of problems can

be currently detected, other than letting them (I) more wisely select the

tools to employ, (II) evaluate on complementing more tools, or (III) even

understand whether current tools can actually identify vulnerabilities that

are becoming more and more popular and harmful nowadays.

161
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We focus on three automated static analysis tools, i. e., ANDROBUGS2,1

TRUESEEING,2 and INSIDER,3 to elicit a taxonomy of security-related con-

cerns detectable with these tools. Afterward, we execute the tools on 6,500

free apps to assess the number of vulnerabilities the tools can detect and

the complementarity among them.

The main results of the study indicate that in most cases the tools can

detect the same vulnerabilities but using a different vocabulary, causing

possible misunderstandings. The tools are also complementary, which

implies that developers should select tools based on the specific categories

of vulnerabilities they would detect. Lastly, the considered tools only par-

tially cover the most widespread vulnerabilities classified by the Open Web

Application Security Project (OWASP) Foundation.

To sum up, we provide the following contributions:

1. An empirical investigation into the support provided by three state-

of-the-practice tools for the detection of security-related concerns;

2. An empirical analysis of the complementarity among the three con-

sidered tools, which might open new research directions connected

to their combination;

3. A publicly available replication package [259], which contains data

and scripts employed to address and extend our research questions.

9.2 R E S E A R C H Q U E S T I O N S A N D M E T H O D

The goal of the empirical study was to assess the current support provided

by existing automated static analysis tools in terms of vulnerability detec-

tion in ANDROID applications, with the aim of providing initial insights

on the capabilities of these tools in terms of security issue types detected

and their detection capabilities. The perspective is of both researchers and

1https://github.com/androbugs2/androbugs2
2https://github.com/alterakey/trueseeing
3https://github.com/insidersec/insider
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practitioners: the former is interested in the capabilities of existing tools

to evaluate whether and which aspects should be further improved; the

latter are interested in understanding how existing tools can support them

in their daily tasks. We set out two main research questions.

First, we analyzed the types of vulnerabilities that current tools can

detect through static analysis. Our goal was to elicit a taxonomy of the

security issue types whose identification is supported by the existing in-

struments. An improved understanding and investigation of this research

angle are required to let researchers be aware of where to invest future

research efforts, other than to let practitioners know which tools can be

used to detect specific vulnerabilities, hence easing the selection of the

proper tools to use in their contexts. This reasoning led to the definition of

our first research question (RQ1):

Û RQ1. What are the vulnerability types identified by existing auto-

mated static analysis tools for mobile apps?

Once we had identified the types of security-related issues whose de-

tection is supported by existing tools, we sought to provide insights into

their detection capabilities. The aim is to elaborate on the extent to which

existing tools can detect vulnerabilities in the first place and, if so, with

which frequency they can detect the vulnerabilities types identified in RQ1

and which complementarity exists among them.

This perspective is key to understanding the extent to which different

tools can collect and provide information on different security-related

concerns. From the practitioner’s perspective, this analysis would ease

further the tool selection process, which might be done by considering the

capabilities of the tools. Also, researchers may exploit our findings to assess

where additional improvements are needed, e.g., by understanding the

characteristics of the tools that should be improved. Therefore we asked

our second research question (RQ2):
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Û RQ1. What are the capabilities of existing automated static analysis

tools in terms of mobile app analyzability, frequency of detection, and

complementarity among them?

The expected outcome of our analysis is an initial conceptualization

and analysis of the current state of the art in vulnerability detection in

ANDROID applications. When conducting the empirical study, we followed

the empirical software engineering principles and guidelines described

by Wohlin et al. [376]. Additionally, in terms of reporting, we employed

the ACM/SIGSOFT Empirical Standards.4 For the sake of replicability and

reproducibility, we made available in the online appendix [259] datasets,

scripts, and the additional analysis that address our research questions.

Google 
PlayStore Sampling

Androbugs

Trueseeing

Insider

Data 
Integration

Dataset

Dataset

Dataset

RQ1. What are the vulnerability 
types identified by existing 
automated static analysis 

tools for mobile apps? 

Taxonomy

RQ2. What are the capabilities of 
existing automated static analysis 

tools in terms of mobile app 
analyzability, frequency of detection, 
and complementarity among them?

Statistical 
Analysis

Figure 9.1: Overview of the Research Method.

Figure 9.1 provides an overview of the research method applied in this

study. The additional details will be explained in the next sections.

4Available at: https://github.com/acmsigsoft/EmpiricalStandards. Given
the nature of our study and the currently available empirical standards, we followed the
“General Standard” and “Repository Mining” guidelines.

https://github.com/acmsigsoft/EmpiricalStandards
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Context Selection

The context of the empirical study was composed of automated static

analysis tools (RQ1) and mobile applications (RQ2).

To select the tools, we adopted four criteria: They were tools (I) open-

source and available on GITHUB; (II) that take an apk file as input; (III)

that perform a static analysis of the source code; and (IV) that can be run

using the command line. These filters led us to consider:

A N D R O B U G S 2 . This tool can detect 52 categories of security-related con-

cerns, such as permission issues and exposure of sensitive information.

T R U E S E E I N G . This analyzer can detect 7 types of security issues: Im-

proper Platform Usage, Insecure Data, Insecure Communications, Insuf-

ficient Cryptography, Client Code Quality Issues, Code Tampering and

Reverse Engineering.

I N S I D E R . According to the official documentation,5 the tool covers the

OWASP mobile Top 10 vulnerabilities and supports multiple program-

ming languages like JAVA, KOTLIN, SWIFT, .NET and others.

When it comes to mobile apps, we aimed at analyzing a large and rep-

resentative sample of mobile applications, which might let us provide

sound and reliable conclusions. While researchers have released various

mobile app datasets over the last decade [82, 113, 198], most of them are

outdated, contain toy apps, or apps that no longer exist [112]. Therefore,

we relied on a public dataset available on KAGGLE,6 namely GooglePlay-

Store dataset. We selected this dataset for two reasons: (1) The dataset is

currently supported by an active community and is continuously updated;

(2) The dataset contains over 10,000 real ANDROID apps having different

scope and characteristics and is more recent than others (it was released

in November 2018).

5INSIDER repository: https://github.com/insidersec/insider.
6The KAGGLE dataset of ANDROID apps: https://www.kaggle.com/lava18/google

-play-store-apps.

https://github.com/insidersec/insider
https://www.kaggle.com/lava18/google-play-store-apps
https://www.kaggle.com/lava18/google-play-store-apps
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We first considered free and open-source apps from the initial set of

applications. This was needed because of the requirements of the static

analysis tools selected, which need to decompile the source code of the

apps before detecting security threats. We considered the apps that could

be freely analyzed to avoid incurring legal issues. Also, we only considered

apps available on the Google Play Store. These two filters led to a dataset

composed of 6,500 applications whose size ranges from 1MB to 99 MB,

while the number of installs from a few dozens to 500,000 million. In

addition, the apps were fairly equally distributed among all the categories

of the GOOGLE PLAY store, meaning that we could analyze apps designed

to deal with different objectives and targets.

RQ1. A Taxonomy of Vulnerabilities Detected by Existing Static Analysis

Tools for Mobile apps

While the description of the tools already indicates the security issues

they can detect, the effort in this phase was needed to homogenize names

and types of issues identified. Indeed, different tools could detect similar

vulnerabilities but name them differently. The goal of RQ1 was to define a

unique schema able to represent the issues identifiable with current static

analysis tools.

Hence, we conducted iterative content analysis sessions [200] involving

two software engineering researchers (1 PhD student, 1 faculty member)

who have more than ten years of programming experience (the inspectors).

TA X O N O M Y B U I L D I N G P H A S E . Starting from the list of vulnerabilities

detectable by the considered tools, each inspector independently ana-

lyzed each item and assigned it to a category based on both the OWASP

official documentation and consulting online resources (e.g., papers,

websites). Afterward, the inspectors opened a discussion and solved

disagreements—this happened in 15 cases (out of 60 vulnerability types).

The process led to the definition of a hierarchical taxonomy composed

of two layers. The top layer consisted of 11 categories, while the inner

layer contained 41 subcategories described in Section 9.3.
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TA X O N O M Y VA L I D AT I O N P H A S E . To reduce possible threats to conclu-

sion validity, we decided to validate the defined taxonomy by involving

two ANDROID security experts with 5 and 4 years of experience, respec-

tively. These were contacted via e-mail. We provided the developers with

a spreadsheet containing a list of 25 randomly chosen vulnerabilities

from 41 security issues detected by the selected tools. The developers’

task was to categorize the security issues according to the taxonomy

previously built (which we provided in a PDF format). The developers

could consult the taxonomy or assign new labels if needed. Once the

external developers conclude the task, they send back the spreadsheet

annotated with their categorization. As a result, both developers found

the taxonomy clear and complete: they always assigned labels contained

in the taxonomy without adding other categories.

RQ2. On the Detection Capabilities of Existing Static Analysis Tools

The objective of RQ2 was to investigate the behaviour of the existing tools

more closely. We executed them against the apk files of the considered

apps and collected their output—to homogenize the output, we developed

a parsing tool that converted the output of the tools into csv files.

The collected csv files were then used to address RQ2. In this respect,

we noticed that the tools failed to produce results in some cases. To maxi-

mize the number of applications analyzed, the first author attempted to

fix the encountered issues manually (e.g., fixing links to external depen-

dencies or changing some versions of some libraries). Nonetheless, we

could not address the issues in 20%, 25 %, and 20% cases for ANDROBUGS2,

TRUESEEING, and INSIDER, respectively.

For the remaining apps, we computed the number of vulnerabilities—

classified according to the taxonomy coming from RQ1—detected by the

considered tools. This investigation provides a quantitative measure of

the number of vulnerabilities detected by the tools. It provides insights

into their detection capabilities concerning the various vulnerability types,

hence potentially indicating the strengths and weaknesses of the tools.
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Finally, we exploited the taxonomy built to evaluate the complementarity

of the considered tools. We measured (1) the number of vulnerability types

detected by more tools and (2) the number of vulnerability types solely

detected by only one of them. In so doing, we considered both the levels

of the taxonomy so that we could provide finer-grained insights.

9.3 A N A LY S I S O F T H E R E S U LT S

This section reports the results of our study. For the sake of clarity, we

discuss each research question independently. Afterward, we discuss the

overall findings of the study.
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Figure 9.2: A Taxonomy of the Security-Related Issues Detected by the Considered
Static Analysis Tools

RQ1. A Taxonomy of Security-Related Issues Detected by Static Analysis Tools

Figure 9.2 overviews the taxonomy of security-related concerns identified

by the considered automated static analysis tools. For the sake of space

limitation, in the following, we only present the high-level categories of

the taxonomy, while a complete description of the taxonomy, along with

examples, is in our online appendix [259].
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I N S E C U R E C O M M U N I C AT I O N - I C . This warning is generated when a

client/server application exchanges information by means of inappropri-

ate protocols [218], for instance, by relying on the http protocol. Devel-

opers could accidentally select insecure protocols to communicate with

other applications or the environment; this might represent a security

issue if sensitive data are exchanged.

I N S E C U R E M A N I F E S T - I M . This category refers to possible issues con-

nected to the insecure use of the AndroidManifest. In the manifest,

developers declare the application’s behavior, including the permissions

required. The concern arises when developers accidentally miss the def-

inition of app restrictions, allowing the app to be potentially called by

external malicious apps.

E X T E R N A L R E S O U R C E S - E R . This issue might arise in cases where mo-

bile applications rely on external resources without putting in place any

control over them. For example, the unchecked user or environment

inputs represent a threat to security, as malicious users might format the

input to create concerns for security.

I M P R O P E R A C C E S S C O N T R O L - I A C . The application does not apply (or

only partially applies) mechanisms to restrict access to resources from

an unauthorized user. When those mechanisms are not correctly ap-

plied, other users can read sensitive information and execute commands

[51]. An example of a successful attack is represented by the case of

Keystore, which is a private repository that developers use to store sensi-

tive or reserved data. A vulnerability affecting the API allowed malicious

users to bypass permissions, leading to privilege escalation without user

interaction [359].

C O D E TA M P E R I N G - C T. Code tampering is the process conducted by a

malicious user to change the app’s behavior or the APIs it relies on [60].

An automated static analysis tool could detect this issue when developers

implement a potentially untrusted third-party library or other external

application whose credibility cannot be verified. An example of this issue
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concerns the presence of hard-coded certificates, as a mobile app might

run without verifying the external component it relies on.

C O D E O B F U S C AT I O N - C O. The category refers to the lack of code ob-

fuscation. Developers apply this operation to make it harder for a hacker

to access the source code. If code obfuscation is not applied, an at-

tacker could read the source code by decompiling the apk, obtaining

the respective Java code in case of native applications, and identifying

vulnerabilities to exploit.

I N S E C U R E D ATA - I D. This threat predominantly refers to the data stor-

age and occurs when developers assume that malicious users or malware

applications will not have access to the file system. For this reason, they

adopt insecure mechanisms to archive private data. Nonetheless, static

analysis tools may detect an issue since an user still can perform a root

procedure, through which s/he can have access to the entire system and

break these mechanisms, hence allowing malware or external attackers

to exploit the vulnerability and have access to sensible data [217].

I N S U F F I C I E N T C R Y P T O G R A P H Y - I C R . This threat relates to the insuf-

ficient mechanisms adopted to preserve personal information [219]. In

these cases, developers apply protocols to preserve personal information

or sensitive data; however, these might be insufficient (e.g., if they select

an insecure protocol to encrypt data).

P R I VA C Y - P R . This category refers to other generic privacy issues de-

tected by the automated static analysis tools. In these cases, the tools

do not explicitly label the vulnerability issues nor provide information

to characterize them. However, from our iterative content analysis, we

could realize that these unlabeled issues relate to some form of privacy

concerns. For instance, ANDROBUGS2 detects issues when developers

use inappropriately the so-called Android_ID, i.e., the ANDROID user

IDs.7 This might represent a security issue since, if externals get access

to the user data, they can steal them [24].

7The Android_ID : https://developer.android.com/training/articles/user
-data-ids.

https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
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P E R M I S S I O N - P E . The ANDROID ecosystem uses permissions to guaran-

tee secure access to resources or protect users’ privacy. Static analysis

tools may detect permission-related issues when developers use weak

permissions i. e., permission settings that are improperly configured too

lenient or more than needed, potentially compromising users’ privacy.

For instance, an issue is detected if an app requests permission to access

the storage but does not use it. In this case, a malicious user could exploit

the vulnerability to read data in the user’s storage.

ø Key findings of RQ1.

The considered static analysis tools can detect 11 different types of

security-related concerns, including improper platform usage and

code obfuscation. In addition, we could identify 7 warning types that

do not have a clear reference but relate to the categories Permission

and Insecure Communication.

RQ2. On the Detection Capabilities of Existing Static Analysis Tools

Our second research question was concerned with understanding the

detection capabilities of the tools in terms of frequency of security issue

detection, and complementarity among the considered tools.

F R E Q U E N C Y O F D E T E C T I O N . When determining the frequency of

security-related concerns, we analyzed the output of the tools, map-

ping the vulnerabilities identified onto the taxonomy built in the context

of RQ1. The results were as follows.

A N D R O B U G S 2 . Figure 9.3 shows the top-10 vulnerabilities detected by

ANDROBUGS2. In almost 50% of the cases, the tool identified ’Web View’

and ’SSL Security’ vulnerabilities: these pertain to the ’External Re-

sources’ and ’Insecure Communication’ categories of the taxonomy.

Looking at the figure, we could then observe that ANDROBUGS2 could

identify various types of vulnerabilities related to different security con-

cerns. While these were detected in fewer cases, the tool seems to support
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Figure 9.3: Top 10 vulnerabilities detected by ANDROBUGS2.

developers in detecting many vulnerabilities. In addition, ANDROBUGS2

could identify at least one instance of each vulnerability of the taxonomy.

On the one hand, further experiments aiming at assessing the accuracy

of the insights provided by the tool would be needed. On the other hand,

the fact that the tool could detect such a wide range of vulnerabilities

might provide indications on the health status of mobile apps, which

may be particularly exposed to security issues that threaten their users.

T R U E S E E I N G . Figure 9.4 reports the ten most frequent vulnerabilities

detected by TRUESEEING. As shown, almost 39% of the vulnerabilities

found by the tool are connected to the use of logging files, which fall

under the ’Insecure Data’ category. While logging is typically considered
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Figure 9.4: Top 10 vulnerabilities detected by TRUESEEING.

a best practice [391], in some cases, developers log sensitive informa-

tion, e.g., sensitive keys or URLs. As a consequence, an attacker could

potentially exploit logs to damage the app. In fewer cases, TRUESEEING

identified security-related concerns related to the ’External Resource’

category, such as ’Detected URL’ (16%) and ’Detected Possible FQDN’

(14%). Both vulnerabilities make data available to externals, namely

URLs in the former case and Fully Qualified Domain Name (FQDN) in

the latter. Other vulnerabilities were detected to a lower extent. Looking

at the categories of those vulnerabilities, we can say that TRUESEEING

identifies a variety of problems, ranging from cryptography to permis-

sion issues. Code tampering problems represent the only exception: this

is the vulnerability that the tool was unable to detect in our dataset. At

the same time, the set of security-related concerns the tool identifies

is quite different from those observed with ANDROBUGS2, suggesting a

possible complementarity between the two.

I N S I D E R . The behavior of INSIDER was drastically different from the one

of the other tools. In this case, we could detect only two categories of

vulnerabilities, namely ’Exposed to sensitive information to an unau-

thorized actor’ (61% of the warnings pertained to this vulnerability) and

’Clear text storage of sensitive information’ (39%). Both of them fall un-
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der the Privacy category of our taxonomy and have to do with sensitive

information inappropriately stored within the context of a mobile app.

The observed behavior of the tool suggests that it has a close focus on

privacy issues, while other vulnerability categories cannot be frequently

identified. This is likely the characteristic that makes the tool different

from the others considered. In addition, it is important to remark that,

differently from the claims made in the official documentation, we could

not find any reference to the detection of vulnerabilities listed by OWASP.

This likely suggests that the documentation available is outdated.

Summing up, different tools seem to focus on different categories of

vulnerabilities. It is also worth remarking that we could identify a number

of security-related categories that are only rarely detected by the tools.

Comparing the categories composing our taxonomy (see Figure 9.2) with

those detected by the tools, we can indeed report that major security

categories, like Code Tampering, Improper Platform Usage, and others,

which have been the subject of previous studies in literature [106, 205], are

poorly identified by the considered tools. Of course, this might be due to

the fact that certain types of vulnerabilities are poorly diffused in ANDROID

apps. However, we still point out the need for additional experimentations

to assess the support provided by current tools.

ø Key findings of RQ2- Frequency.

Different tools detect different security-related concerns with differ-

ent frequencies. Certain categories of problems are (almost) never

detected, possibly suggesting the need for further studies on the actual

support provided by the considered tools in practice.

C O M P L E M E N TA R I T Y A M O N G T H E T O O L S . From the frequency analy-

sis, we discovered that different tools seem to capture different security-

related concerns. With our last analysis, we sought to provide additional

insights into the complementarity among the tools. We could first ob-

serve that INSIDER does not capture any category of problems that the

other tools cannot already detect. In this sense, the tool seems to provide
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fewer benefits in practice, as it not only identifies a lower amount of se-

curity concerns but also targets problems that other tools can detect—of

course, these observations should be backed up with additional analyses

on the accuracy of the recommendations provided to developers. As

for ANDROBUGS2 and TRUESEEING, instead, we could observe that the

two tools cover pretty different categories of problems. Indeed, only the

category of ’Insecure Data’ is in common. These findings suggest that

the tools might be combined by developers to enlarge the coverage of

security-related concerns.

Similar conclusions could be drawn when considering the security con-

cerns about the second level of the taxonomy. Analyzing those issues, we

could discover that only ’Web View’ and ’Manipulable Activity’ vulnera-

bilities are in common between ANDROBUGS2 and TRUESEEING.

ø Key findings of RQ2- Complementarity.

The combination of ANDROBUGS2 and TRUESEEING may provide more

extensive coverage of security-related problems. On the contrary, IN-

SIDER does not cover vulnerabilities that are not detected by the other

tools.

9.4 T H R E AT S T O VA L I D I T Y

T H R E AT S T O C O N S T R U C T VA L I D I T Y. One of the objectives of this chap-

ter was concerned with the categorization of the security-related con-

cerns detected by existing automated static analysis tools. This objective

was naturally threatened by the selection and accuracy of the considered

tools. Our choice was driven by multiple considerations. In the first place,

we have considered only open-source static analyzers that can be called

via command line and that take an apk file as input. The set of tools

analyzed restricts our possibility of providing a comprehensive view of

the issues detected by currently available tools. From the accuracy of the

tools selected, our work might be threatened by not considering false

positives and/or false negatives. The identification of false positives was
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not possible in our case. This indeed requires knowledge of the applica-

tion domain and the source code of the considered apps: as such, the

identification should have been done by the original developers of the

application, but, unfortunately, this was not feasible. For this reason, our

results might be partially affected by the presence of false positives. At the

same time, our analysis could not deal with false negatives, namely the

actual security-related concerns that the tools did not identify. Of course,

this limitation of our study cannot be addressed as the tools could not

detect those issues. Our analysis sets a lower bound for researchers and

practitioners: despite the inherent limitations, our findings still quantify

how the currently available vulnerability and malware detectors support

developers. Researchers interested in further elaborating on the matter

may build on top of our findings, providing an improved view of the

capabilities of the tools.

T H R E AT S T O C O N C L U S I O N VA L I D I T Y. The major threat in this cate-

gory concerns the research methodology used to address the research

questions. When considering RQ1, we applied an iterative approach to

extract the taxonomy of security-related concerns detected by the ex-

isting tools. This task requires a human-intensive effort, is subjective

by design, and leads to wrong interpretations. To mitigate this threat,

we used (as possible) a systematic approach and two inspectors partici-

pated in building the taxonomy. In RQ2, a possible threat refers to the

different granularity of the vulnerabilities identified by the considered

tools. Part of our future work will investigate the impact of this aspect on

our findings more closely.

T H R E AT S T O E X T E R N A L VA L I D I T Y. There are four important consider-

ations. First, we considered three tools, meaning that the coverage of the

conclusions is somehow limited. Secondly, we decided not to consider

dynamics or hybrid approaches to detect possible vulnerabilities. This

was a methodological decision: we were focused on analyzing statics

vulnerability tools, so other kinds of methods were considered out of

scope. Third, our study considered 6,500 ANDROID apps, and it can be

regarded as one of the most extensive empirical investigations up to date



9.4 T H R E AT S T O VA L I D I T Y 177

[37, 364]. Finally, the empirical investigation considers ANDROID apps:

as such, our work might not generalize to apps written using different

platforms. Future replications of this work are desirable: to enable them,

we released a replication package that would allow further researchers

to reproduce our study in other contexts.
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10
D I S C U S S I O N A N D I M P L I C A T I O N S

This chapter examines the main findings identified in previous chapters.

To improve the readability, we will discuss the results achieved to respond

to our RG, and then, we will discuss the results obtained by further studies.

10.1 R G . C O D E Q U A L I T Y I N S O F T W A R E S Y S T E M S O V E R T I M E

We addressed the RGa in Chapters from 3 to 6. The results provide a num-

ber of reflections, implications, and actionable items for researchers and

practitioners that need to be elicited.

RG. Reflections, Implications, and Actionable Items

R E U S A B I L I T Y M E C C H A N I S M S O N C O D E S M E L L S . Our findings par-

tially contradict most of the investigations previously done on the matter.

As already mentioned, a number of empirical investigations established

a negative relation between the adoption of reusability metrics and code

complexity [8, 9, 122]. However, the evolutionary nature of our study

revealed something different: in most cases, the correct adoption of in-

heritance and delegation positively related to the decrease of code smell

severity. While we are aware that further analyses would be needed to

confirm our conclusions on a larger scale, the results obtained so far

allow practitioners to (re-)consider reusability as a core mechanism for

evolving software systems. Similarly, our findings suggest that broader

and perhaps more conclusive indications into the usefulness of code

metrics might be obtained by looking at how these metrics evolve over

time and how they impact code quality.

181
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Design patterns are intended to improve the quality of code, as they

are introduced with the purpose of organizing the classes in such a way

that good attributes of inheritance and delegation are enhanced. How-

ever, implementing such reuse mechanisms is not trivial, as developers

may accidentally fall into mistakes, such as overuse, e. g., adding design

patterns when not necessarily needed, or misuse, e. g., making a sub-

optimal choice on the kind of pattern to employ for a specific problem.

Such mistakes can eventually lead to bad effects, unnecessarily adding

atoms of complexity to the code, which in turn can result being less

comprehensible and even affected by smells, as observed in our study.

Therefore, there is the need for developers to focus on properly apply-

ing design patterns [394], to avoid declining their positive effects into

worsening the code quality.

I N H E R I TA N C E A N D D E L E G AT I O N O N D E F E C T- P R O N E N E S S . In this

respect, two observations should be made. In the first place, we

discovered that inheritance and delegation metrics, coming from the

operationalization of the reusability mechanisms used by developers,

have a relatively low impact on defect-proneness. In the second place,

we found out that the control variables of our statistical analysis, namely

the metrics pertaining to the Chidamber & Kemerer [68] metric suite,

have also a limited connection to defect-proneness. Both findings are

somehow surprising: these metrics were indeed experimented in plenty

of studies on source code quality and researchers have been often

analyzing the extent to which they can support the monitoring and

prediction of defect-proneness of source code [38, 128].

To provide further, more actionable insights into our findings and better

understand the extent to which our statistical analysis would be actually

corroborated when considering the impact of code quality metrics on

defect prediction.

More specifically, given that our analysis granularity level was the com-

mit and that we needed to account for the time relations between com-

mits, we focused on the so-called just-in-time defect prediction [163],
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that is, the creation of defect prediction models able to assess the defec-

tiveness of individual code commits based on the data collected through

the analysis of previous commits.

To make our analysis as precise and sound as possible, we conducted

a partial replication of the work by Pascarella et al. [271], who experi-

mented with a large set of features composed of 24 process, product,

and developer-oriented metrics to capture the defectiveness of code

commits. As product metrics, the original authors used the metrics also

employed within our study. Through this replication, we could therefore

assess the role of these metrics when considering their contribution

to defect prediction, other than comparing such a contribution with

respect to additional metrics typically used in defect prediction, hence

enlarging our overview on the value of the considered metrics. While

Pascarella et al. [271] mainly focused on a variant of the problem of

just-in-time defect prediction aiming at predicting defective files within

commits rather than defective commits, they also compared against a

standard just-in-time defect prediction model, hence enabling an analy-

sis at commit-level. The reason for relying on this work was twofold. In

the first place, Pascarella et al. [271] released an online appendix with all

the scripts used in their study and documentation that enables the exact

replication of their work: as such, we avoided possible bias due to the

re-implementation of the defect prediction model. Second, Pascarella et

al. [271] took into account a large amount of metrics having different na-

ture and coming from previous literature on defect prediction [163, 288]:

as such, we could conduct a larger and sound experimentation of how

quality metrics affect the performance of just-in-time defect prediction.

To conduct our analysis, we performed the following steps:

• For each project considered in our study, we mined all the commits

to compute the 24 process, product, and developer-oriented met-

rics. Since the metrics were computed on the files modified within

the considered commits, we aggregated them to have a unique

commit-level value for each metric. This was done using the “group
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by” operation, considering the commit hash as the primary key,

and applying the mean and median over all the metrics;

• We merged the information collected with the one available in

our dataset: for each project and for each commit, we combined

the 24 process, product, and developer-oriented metrics with the

inheritance and delegation metrics;

• We trained and tested a Random Forest classifier, i.e., the best clas-

sifier identified in the work by Pascarella et al. [271], by applying

a Time Series Split validation. This is a time-aware variant of the

cross-fold validation that (i) divides the dataset into K (in our case,

K = 10) folds and (ii) in the kth split, it returns first k folds as train

set and the (k+1)th fold as test set.1

• This validation can be applied when the time order may impact

the results and avoid training the model using future commits to

predict the defectiveness of past commits. The performance of the

model was assessed through multiple evaluation metrics such as

precision, recall, F-Measure, and AUC-ROC.

We investigated two predictive configurations. In the first one, we de-

vised a binary defect prediction model that predicts a commit as defec-

tive or not, i.e., the standard defect prediction scenario. In the second

configuration, we devised a multi-class defect prediction model able to

assess how the source code defectiveness varies over the evolution of

the project, i.e., a defect prediction scenario where the task is to foresee

the defectiveness trend in terms of increase, decrease, or stability of the

number of defects within a software project. This latter scenario is closer

to the research methods employed in our study and was set up with the

aim of embedding additional evolutionary considerations within the de-

fect prediction model and investigating the contribution of code quality

metrics to assess the overall defectiveness of a software project. From a

more technical perspective, the model was devised to assign a commit

1https://scikit-learn.org/stable/modules/generated/sklearn.model_se
lection.TimeSeriesSplit.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
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to a categorical variable within the set {‘Increased’, ‘Decreased’, ‘Sta-

ble’ }, namely the same variables used within the Multinomial Log-Linear

statistical model.

For both scenarios, we executed the model in two runs: the first utilizing

all metrics and the second excluding metrics related to inheritance and

delegation. This approach allowed us to closely observe the effects of the

key variables in our study, namely inheritance and delegation metrics. By

doing so, we aimed to quantify the accuracy improvement or deviation

when these metrics were included as features in the defect prediction

models. Additionally, we calculated the importance of each feature to

determine which metrics were most influential for the models tested.

In terms of results, we could draw multiple considerations. When consid-

ering the binary defect prediction scenario, the performance achieved

was close to 94% in terms of F-Measure both when considering the mod-

els with and without inheritance and delegation metrics. On the one

hand, this result seems to indicate that the overall defect prediction ca-

pabilities cannot be improved through the use of reusability metrics,

hence confirming our results, i. e., inheritance and delegation metrics

have a limited connection to defect proneness. On the other hand, it is

worth observing that improving over an F-Measure of 94% is always par-

ticularly tough: in this sense, the contribution given by inheritance and

delegation metrics may be somehow “hidden” by the high performance

of the defect prediction model. As a consequence, a more reasonable

way to assess the contribution of reusability metrics was to assess the

feature importance of the metrics considered by the model relying on

inheritance and delegation indicators. Through this analysis, we discov-

ered that (1) the Random Forest classifier never selects specification and

implementation inheritance among the top-20 features to use for pre-

dicting defective commits in the considered projects; (2) the amount of

delegations was in the top-15 features employed by the model in all the

projects; (3) the specification and implementation inheritance metrics

had limited predictive power, with other inheritance metrics such as

NOC and DIT having a slightly higher impact on the predictions. These
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findings were perfectly in line with our observations: we could indeed

further corroborate that the defect-proneness of source code is only

partially dependent on reusability metrics and that, instead, the way

developers structure hierarchies might impact defects more than the

specific reusability mechanisms employed.

Our findings also revealed that the control variables used in our statisti-

cal analysis, i. e., the Chidamber-Kemerer metrics, were not statistically

impactful on defect proneness. The defect prediction investigation con-

firmed these findings as well. Indeed, the feature importance analysis

constantly reported process metrics such as the entropy of changes [137],

the scattering of code changes [84], and commit date [288] as the most

impactful features. In the first place, our findings corroborate previous

research showing that process metrics can better predict defects with

respect to traditional code quality attributes [288] and, as a consequence,

provide additional support to the research field involved in the defini-

tion of process and developer-oriented metrics for defect prediction.

Secondly, our research outlines that the use of code quality metrics, in-

cluding the inheritance and delegation ones, to assess the defectiveness

of source code may result in suboptimal recommendations for devel-

opers and, for this reason, these metrics should be used for different

purposes and/or for different use cases: e. g., our previous work [118]

revealed that quality, inheritance, and delegation metrics can positively

contribute to the evolutionary analysis of code smells.

A similar discussion could be done when considering the multi-class pre-

diction model. Also in this case, we found that the models relying and not

on reusability metrics had similar performance in terms of F-Measure

(94%), with inheritance and delegation metrics that were selected by

the Random Forest classifier for all projects. While they had a lower

predictive power than NOC and DIT, we found that both inheritance

and delegation metrics were more impactful than cohesion, coupling,

and complexity metrics, i. e., LCOM, CBO, WMC. As such, we could fur-

ther corroborate that quality, inheritance, and delegation metrics have

a limited connection to defect proneness. Similarly to the previous ex-
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periment, the entropy of changes [137], the scattering of code changes

[84], and commit date [288] were the most important characteristics to

predict defective commits, hence suggesting that evolutionary consider-

ations on the defect proneness of source code should be made through

the analysis of historical information coming from the complexity of the

development process.

All in all, our findings corroborated the negative results obtained by pre-

vious researchers who experimented with code quality metrics in defect

prediction [141, 161, 287]. While this is already worrisome for the entire

software maintenance and evolution research community, our findings

should be considered as even more worrisome because of the granularity

of the analysis conducted. We indeed elaborated on the change history

information of software projects, analyzing how code quality metrics

were related to defect-proneness throughout the evolution of the consid-

ered projects, discovering that none of them was statistically correlated

to the variation of defect-proneness. As such, our results represent an

additional alarm signal for the research community.

¬ Implication 1. An improved understanding of the role of code metrics

for source code quality can be obtained by looking at their evolution and

how these impact code quality attributes. As such, the research community

might consider novel empirical investigations aiming at characterizing

the long-term, evolutionary impact of code metrics.

¬ Implication 2. Practitioners need to be informed on the benefits and

drawbacks of reusability mechanisms during maintenance and evolu-

tionary tasks.

M O N I T O R I N G U S A G E T R E N D S T O I M P R O V E S O F T W A R E Q U A L I T Y.

Altogether, these findings seem to suggest that an advanced knowledge

on how to improve software quality might be obtained by exploiting

precious pieces of information coming from the analysis of the change

history of software projects. For instance, we envision the definition

of monitoring techniques that, by exploiting the way developers use



188 D I S C U S S I O N A N D I M P L I C AT I O N S

Figure 10.1: Use case scenario in which the monitoring of reusability metrics
might be exploited.

to adopt code reusability mechanisms, may recommend the most

appropriate actions to conduct while performing corrective mainte-

nance. Similarly, we can envision the definition of novel approaches

based on nudge-theory [48] to stimulate developers toward the more

frequent or most appropriate adoption of code reuse to reduce the

overall defect-proneness of source code. To make our conjectures

more tangible, let us consider the scenario depicted in Figure 10.1,

which represents the way we envision a monitoring system may

support developers during software maintenance and evolution. More

specifically, suppose that a system ‘S’ contains a module ‘A’ having

(1) multiple submodules, i.e., ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’ and ‘L’ in

Figure 10.1, each either directly or indirectly inheriting from ‘A’; (2) some

operations through which the submodules delegate operations to ‘A’.

In such a scenario, a regular monitoring of reusability metrics or the

prediction of usage trends may allow the developer to observe or predict

the way the inheritance and delegation relations vary over time, possibly

detecting or even preventing the increasing complexity affecting ‘A’ and
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its submodules, other than the presence of suboptimal design decisions

that would require some refactoring actions.

For instance, suppose that in the scenario proposed in Figure 10.1 a

monitoring system realizes that the amount of functionalities provided

by ‘A’ is steadily increasing, with the frequency of ‘A’ being reused de-

creasing in the submodules—this case may indicate that the system

is in the descending path of a ‘increasing-decreasing’ implementation

inheritance pattern. This may indicate a suboptimal use of inheritance

and delegation: ‘A’ offers more services, but the submodules inheriting

from it do not fully exploit them, suggesting that they are not properly

exploiting the inheritance mechanism—note that a similar scenario has

been associated with multiple risks for software reliability, including an

increasing change- and defect-proneness [265] and a higher likelihood

of the system being maliciously attacked because of the suboptimal visi-

bility granted to fields and operations [328]. By monitoring reusability

metrics, multiple insights may be provided. On the one hand, develop-

ers may be informed of the evolution of reusability metrics and exploit

such an information to schedule quality assurance sessions aiming at

reducing quality and security concerns, e.g., code review targeting ‘A’ and

the way the submodules interact with it. On the other hand, automated

instruments might exploit reusability metrics to recommend refactoring

actions aiming at simplifying the hierarchy: for instance, the situation

described above, i.e., submodules not fully exploiting the features of ‘A’,

may suggest the presence of a Refused Bequest smell [105], whose refac-

toring may either consist of defining a new superclass only containing

the fields and operations that are actually needed to the submodules, i.e.,

Extract Superclass refactoring, or replacing the inheritance mechanism

with delegations, Replace Inheritance with Delegation refactoring.

Based on the considerations above, the multifaceted ways our findings

can be exploited represent a call for researchers in software quality.

R E U S E A N D I T S A D O P T I O N : T W O S I D E S O F T H E S A M E C O I N . Our

empirical investigation revealed a dichotomy between the concept of
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code reusability and its actual application. In particular, we found that

while reusability itself is a useful instrument to improve software quality

and reduce maintenance effort, an inappropriate adoption of these

mechanisms may have negative implications. This is indeed the case

observed with DIT and NOC in our statistical exercise, two well-known

metrics that measure the extent of the hierarchical relations among

classes. We found that increases in terms of hierarchical relations lead

to negative variations of the defect-proneness of software artifacts.

As such, we argue the need for further research, especially in terms

of software refactoring optimization. Researchers are indeed called

to better investigate the reasons behind the misuse of inheritance

and delegation mechanisms and when and why these can deteriorate

software quality. These investigations would be instrumental to the

definition of novel refactoring techniques that may support developers

while optimizing hierarchies of classes.

At the same time, our findings provide two key implications for practi-

tioners. On the one hand, an improved knowledge of the usage patterns

might be beneficial to understand the way code reusability evolves in

their own projects: practitioners would therefore put in place monitoring

instruments to verify the evolution of inheritance and delegation uses

and assess how the usage trends co-evolves with software quality. On the

other hand, our results might be exploited by practitioners to reason on

the use and misuse of inheritance and delegation mechanisms, other

than on how the creation of complex hierarchies might possibly worsen

source code quality and increase corrective maintenance effort.

P R E D I C T I O N O F C O D E Q U A L I T Y P R O P E R T I E S : T H E R O A D A H E A D.

Another aspect to consider is the one concerned with the prediction

of code quality properties. In this respect, the findings coming from

our research questions altogether contribute to increase the research

community awareness with respect to the need for novel code quality

prediction techniques and tools. First, the traditional code quality

metrics employed in prediction models have little to no correlation

to defect-proneness. Second, code reusability mechanisms might
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potentially boost the code quality analysis and possibly being used

within predictive modeling techniques. In addition, the usage trends can

be exploited to recommend which of the features would be more worth

to use in specific moments of the evolution. All these aspects, emerged

from our analyses, represent future perspectives that our research

community would like to further investigate. We envision multiple

experimentations aiming at revisiting previous findings obtained in

literature to account for the evolutionary nature of software - the

research method employed in our study, which took the change history

information into account, may indeed be generalized to understand

how different code quality metrics evolve over time and how they impact

software quality. In our opinion, analyses of this type would potentially

lead to revolutionize code quality as we know, revealing insights driven

by the actual adoption of code metrics by developers.

Contemporaneous, we envision novel techniques that, by analyzing the

evolutionary development context, may feed predictive models with

the most relevant metrics to predict source code quality. Also in this

case, we believe that an evolution- and context-aware view of predictive

software maintenance might substantially boost the support that we, as

researchers, may provide to practitioners.

¬ Implication 3. The SE community needs to conduct further research to

identify more representative metrics for measuring code quality.

C O D E S M E L L S I N A I - E N A B L E D S Y S T E M S . Based on our results, devel-

opers need to be informed of the potential impact of code smells on

their systems during the software evolution process. Despite the existing

body of research that emphasizes the importance of monitoring quality

attributes to prevent a subsequent increase in effort [23, 323], there is

still a need for further empirical investigations to determine the extent

to which code smells can pose a danger.

¬ Implication 4. More empirical research needs to be done to begin to

make developers informed of the potential issues associated with the

presence of code smells.
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D I F F E R E N T M I N D S E T S I M P LY D I F F E R E N T S M E L L S . Python develop-

ers often employ specific coding constructs to avoid loops or reduce the

amount of code needed for tasks, which can lead to unique code smells

not typically found in other languages like Java. These smells, although

sometimes differing from those documented in the literature, can still

degrade software quality over time. Therefore, a detailed examination

of Python’s distinctive features is necessary to determine best practices

that the Python community should follow to minimize these code smells

in their systems.

¬ Implication 5. A thorough analysis of the Python community is needed

to understand whether what they consider best practices may be antipat-

terns that can cause code smells.
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ø Key findings of RG.

Our findings indicate that reusability mechanisms contribute to re-

duced code smells and positively affect other important software main-

tenance aspects, such as the effort required for defect resolution. The

correct adoption of inheritance and delegation is associated with a

decrease in code smell severity. In contrast, reusability mechanisms

employed by developers exhibit a relatively low impact on defect-

proneness. The control variables in the statistical analysis, particularly

metrics from the Chidamber & Kemerer suite, show limited connec-

tions to defect-proneness. We discovered that an increase in hierarchi-

cal relations is linked to negative variations in the defect-proneness of

software artifacts. Furthermore, design patterns are not, in any case,

the “best solution” to increase code quality, indeed, implementing

these mechanisms requires careful consideration, as developers may

inadvertently make mistakes such as overusing or misusing design

patterns. These mistakes can result in added complexity, making the

code less comprehensible and prone to the emergence of smells.

Lastly, code smells in Python Systems represent a critical issue for

developers. Indeed, the built-in functions that Python provides induce

the proliferation of specific code smells; our results also suggest that

most times, Python developers introduce code smells in their systems

due to evolutionary activities.

10.2 A D D I T I O N A L C O N S I D E R AT I O N S : F U R T H E R S T U D I E S

We addressed the further studies from Chapters 8 to 9. The results pro-

vide implications for the Software Engineering community, which we will

explain in the next sections.
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Further Studies: Reflections, Implications, and Actionable Items

Our studies provide a number of observations of how code quality declined

in emerging systems. Based on previous chapters, we discovered that the

software engineering community shyly investigated emerging systems by

considering code quality aspects.

The following sections describe the main reflections and implications

identified for these systems.

O N V E R I F I A B I L I T Y A N D R E P L I C A B I L I T Y. As noticed throughout our

systematic literature review and analyses, a large number of primary

studies do not report granular information to enable neither verifica-

tion nor replication. In addition, the papers are rarely accompanied by

replication packages that make data and scripts publicly available for

other researchers. In our humble opinion, this represents a key threat to

dissemination and verification of the published research papers, which

leads to two implications concerned with the way research papers are

disseminated:

¬ Implication 1. Researchers should consider including more method-

ological details to enable an improved understanding of the design and

definition of the proposed techniques. This would be beneficial in terms

of dissemination, as practitioners might better understand how to put the

defined techniques into practice, increasing the overall impact of the re-

search on the matter. At the same time, this would support research, since

additional investigations might be made on top of the findings achieved

by previous researchers, further increasing the impact of research.

A I & I O T P R I VA C Y : T H E R O A D A H E A D F O R S E 4 A I R E S E A R C H . The re-

sults to our research questions clearly indicate that there is still a long and

winding road to making artificial intelligence suitable for the problem of

IoT privacy. According to our analyses, this pertains to several aspects

that, in turn, call for several implications for software engineering for the

artificial intelligence research community:
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¬ Implication 2. Researchers have been mainly focusing on six tasks:

i) User Authentication, ii) Network Analysis, (iii) Attack Detection, (iv)

Framework Building, (v) Malware Detection, and (vi) Privacy-Preserving

Scheme. At the same time, our systematic search identified several other

tasks that have received less attention and that further research might

consider. Perhaps more importantly, we highlight the lack of insights from

the trenches, namely the lack of empirical investigations that target the

practitioners’ and IoT users’ perspectives and might reveal other relevant

tasks that the current body of knowledge has neglected. Consequently,

we claim that the first relevant aspect for future research in the field is

represented by a large-scale analysis of IoT privacy in practice.

¬ Implication 3. A third, critical issue unveiled by our work relates to the

public datasets currently available. Besides having only a few datasets

to experiment with, the major criticism is concerned with the level of

realism and actual suitability of these datasets. As commented in Chapter

8, some datasets are unbalanced, being potentially unsuitable for training

artificial intelligence techniques. Moreover, the most widely used datasets

are biased toward certain accuracy indicators, hence biasing the interpre-

tation of the results. This is, likely, the most important issue encountered

by our systematic review, as it impacts most research conducted so far.

Therefore, we argue that concrete steps should be conducted to devise

novel, more reliable datasets to re-assess the experiments performed so far.

We hope that the indications provided by our work, in terms of limitations

and challenges of the methodology employed by current papers, might

help design better the empirical investigations into the performance of

artificial intelligence techniques.

O N T H E S U P P O R T P R O V I D E D B Y S TAT I C A N A LY S I S T O O L S . We con-

ducted an analysis aiming at comparing the support of the tools against

the list of the top vulnerabilities identified by the Open Web Application

Security Project (OWASP), one of the main security foundations world-

wide that periodically produces reports about the most frequent and
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harmful mobile vulnerabilities.2 From this analysis, we could observe

that the current tools only partially align with the OWASP mobile

top-10. While the detection of security-related concerns classified as

’Improper Platform Usage’, ’Insecure Communication’, or ’Insufficient

Cryptography’ is supported by some of the considered tools, e.g.,

ANDROBUGS2, a number of other critical issues are still neglected.

For example, the categories of ’Client Code Quality’ or ’Extraneous

Functionality’ are not considered by any tool. In addition, it is also worth

mentioning that the OWASP top-10 considers the issues pertaining to

’Improper Platform Usage’ as the most popular nowadays. Nonetheless,

our frequency analysis revealed how this category is not among the most

frequently identified, possibly indicating the inability of the tools to deal

with this category of security concerns. In other terms, there seems to

exist a mismatch between what the tools detect and what they should

provide support for. We argue that this mismatch should be further

investigated by our research community and tool vendors, which might

be interested in providing additional support for ANDROID developers.

¬ Implication 4. The software engineering community needs to focus on

the improvement of existing vulnerability detection tools to assist devel-

opers during vulnerability detection tasks.

O N T H E A C C U R A C Y O F C U R R E N T T O O L S . In our study, we executed

three state-of-the-art tools on a dataset of ANDROID apps, analyzing

their output from various perspectives. We recognize that our observa-

tions might be threatened by the presence of false positives, i. e., wrong

indications given by the tools. Yet, our empirical setting allows us to

highlight the lack of empirical investigations into the accuracy of static

analysis tools for ANDROID apps. Perhaps more worrisome, we point out

the lack of datasets that might be used for this purpose. Therefore, we

call for more research on the matter and the definition of novel datasets

that can be exploited to compare and improve the current state of static

analysis in mobile applications.

2The OWASP Mobile Top-10: https://owasp.org/www-project-mobile-top-10/
.

https://owasp.org/www-project-mobile-top-10/.
https://owasp.org/www-project-mobile-top-10/.
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¬ Implication 5. Researchers must release updated datasets on vulnera-

bility to improve the existing static analysis tools.

O N T H E C O M B I N AT I O N O F M O R E T O O L S . The results coming from

Chapter 9 allowed us to assess the complementarity among the three

tools, which revealed that different tools might identify different security

concerns. We may argue that combining multiple tools can achieve more

extensive coverage of the issues affecting a mobile app. On the one hand,

this finding can be exploited by practitioners, who might be willing to

adopt and run more tools against their code. On the other hand, such a

complementarity might be an opportunity for researchers who might

want to devise novel smart techniques able to automatically combine

static analysis tools based on the context or the developer’s needs.

O N T H E S E C U R I T Y O F M O B I L E A P P S . While our analysis’s main goal

was establishing the current support provided by static analysis tools, it

also revealed insights into the security of the mobile apps analyzed. Our

frequency analysis indicated that mobile apps are frequently affected by

security-related concerns. Therefore, it would be useful to better analyze

the current state of security in ANDROID. For instance, empirical investi-

gations targeting the vulnerabilities detected by the tools to elaborate

on the reasons behind their introduction might provide key insights for

practitioners interested in improving the security profile of their apps.

¬ Implication 6. Practitioners who daily work on mobile apps need to

be informed on the possible inefficiency of static analysis tools to detect

vulnerability in their applications.
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ø Key findings of further studies.

The results achieved for our further studies indicated that AI tech-

niques are usually unsuitable for dealing with privacy in a real-world

scenario. In addition, we discovered that most of the time, the artifi-

cial intelligence techniques adopted by researchers work in agnostic

contexts, suggesting that their applicability does not depend on the

environment where IoT devices work.

Finally, our investigation reveals that vulnerability tools only partially

cover the top-10 OWASP, showing a mismatch between the quality

issues detected and the support needed. This suggests the potential

benefit of combining multiple tools for comprehensive coverage in

addressing security issues in mobile applications.
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F U R T H E R A N A L Y S I S

11.1 F U R H T E R A N A LY S I S A N D N E X T D I R E C T I O N S

This chapter explores further analyses and the research directions that

need to be explored to comprehend how code quality needs to be investi-

gated in software systems.

L I M I T E D T O O L S A N D R E S E A R C H I N S T R U M E N T S . While the literature

and studies in this dissemination analyze code quality from various

perspectives, there is a need for tools to examine and address this issue

comprehensively. As explained in Chapter 3 and Chapter 4, we developed

a static analysis tool tailored for detecting programming abstractions

in Java source code. Nevertheless, this tool represents an initial step to

addressing code quality concerns. The broader spectrum of software

reusability mechanisms warrants exploration beyond programming ab-

stractions and design patterns, encompassing other facets such as third-

party libraries.

It’s worth noting that current tools are limited to analyzing Java source

code, which restricts the ability to investigate AI-enabled systems, typi-

cally developed using Python. These systems heavily rely on third-party

libraries, potentially leading to quality issues stemming from misuse or

abuse of such mechanisms. Therefore, there’s a pressing need to extend

analytical capabilities to encompass Python and scrutinize the quality

implications of utilizing third-party libraries within these contexts.

199
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Research Directions:

¬ The software engineering community needs to release tools to

detect reusability mechanisms for other programming languages.

¬ Investigate the quality implications of utilizing third-party li-

braries in Python codebases. This could involve studying common

issues encountered when using these libraries and developing

strategies to mitigate potential risks.

¬ Investigate strategies and develop tools to support code quality

analysis in multi-language codebases, particularly those involving

both Java and Python. This could include techniques for interoper-

ability between existing analysis tools or the development of new

tools capable of analyzing code written in multiple languages.

PA R A D I G M S H I F T. Based on the results obtained from Chapters 8 to 9,

the adoption of systems developed using emerging technologies dras-

tically increases over time. These results suggest that a paradigm shift

is required for these systems, i. e., traditional software paradigms (e. g.,

object-oriented) seem to be a sub-optimal choice for building these

systems. Indeed, looking at the results obtained from Chapter 8, pro-

gramming languages that can combine multiple paradigms (e. g., Python

or Matlab) better fit the characteristics required by practitioners to

build such systems. In addition, due to the restricted hardware dimen-

sion of mobile and IoT devices, programming languages need to be

re-engineered to be more “memory-preserving”.

Moreover, big companies and open-source communities often opt for

established programming languages like Java or Kotlin for developing

IoT systems and mobile applications. However, these languages may not

be well-suited for coding on low-level devices, leading to potential per-

formance issues and decreased perceived software quality by end-users.

Additionally, current programming languages typically operate within a

single process, limiting software system performance or necessitating
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multi-process libraries. Unfortunately, employing such libraries may in-

crease the likelihood of unexpected behaviors, particularly if developers

lack experience with multiprocessing techniques.

Research Directions:

¬ The SE community must propose mechanisms, paradigms, and

frameworks to facilitate the paradigm shift.

¬ Researchers need to focus on how programming languages can

better support the development of systems that operate in agnos-

tic contexts, such as IoT systems. This could involve exploring

features of programming languages to seek greater abstraction to

facilitate adaptation and ease the processes of maintenance and

evolution.

Open Issues and Future Analyses

Despite the deeper investigation performed in this dissemination to under-

stand Evolutionary Code Quality, a long way remains, and future analysis

needs to be conducted to release context-dependent quality assurance

tools. In this sense, due to the findings achieved in this dissertation, im-

portant future studies need to be done to comprehend how code quality

evolves over time. More in detail, we noticed by the findings obtained

from Chapter 6 that different programming languages can imply different

code smells, and in this way, this could also imply that different families of

software systems can have different code quality issues over time. More-

over, the introduction of AI-enabled systems into the market could not be

overlooked, suggesting that also artificial intelligence components could

suffer from the rise of code smells. In addition, a number of frameworks

have been proposed to assess privacy and security concerns in systems

that use emerging technologies. However, these frameworks are not ap-

plied in practice in big companies and open-source communities, and this
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could indicate a lack of awareness of the importance of preserving quality

aspects such as privacy and security for these systems.

The following subsection provides some detail on AI-specific code smells

and describes one of the most prominent frameworks to preserve privacy

in systems that daily exchange and store sensitive information.

AI-Specific Code Smells

Table 11.1: List of AI-CSs Identified by Zang et al..
Code Smell Description Pipeline Stage Effect

Broadcasting Feature Not
Used

This smell refers to when the developer uses a tensor without a broadcasting operation. Model Training Memory Issues

Chain Indexing This smell refers to when a developer uses to access a single data of a data frame using
“[][]”.

Data Cleaning Performance

Columns and DataType
Not Explicitly Set

This smell refers to when a developer declares a data frame without declaring the
column name and the data type.

Data Cleaning Defect Proneness

Data Leakage This smell refers to when the data used by developers to train the model contains
prediction results information.

Model Evaluation Defect Proneness

Data frame Conversion
API Misused

This smell refers to when a developer uses the function .values() to transform a data
frame object to a Numpy array.

Data Cleaning Defect Proneness

Deterministic Algorithm
Option Not Used

This smell refers to when a developer does not remove the option “deterministic_-
algorithms(True)”.

Model Training Reproducibility

Empty Column Misinitial-
ization

This smell refers to when a developer uses zeros values or empty strings to initialize a
new column in a data frame.

Data Cleaning Robustness

Gradients Not Cleared Be-
fore Backward Propaga-
tion

This smell refers to when a developer does not use “optimizer.zero_- grad()” before “
loss_fn.backward()” to clear gradients.

Model Training Defect Proneness

Hyperparameter Not Ex-
plicitly Set

This smell occurs when a developer does not explicitly set the hyperparameter of an AI
algorithm.

Model Training Defect Proneness & Reproducibility

In-Place APIs Misused This smell refers to when the developer assumes the Pandas function returns an in-place
value.

Data Cleaning Defect Proneness

Matrix Multiplication API
Misused

This smell refers to when the developer uses the function “np.dot” to multiply a Numpy
matrix.

Data Cleaning Readability

Memory Not Freed This smell regards when a developer declares a machine learning model in a loop
operation without using the function “clear_session()” at the end of the loop.

Model Training Memory Issue

Merge API Parameter Not
Explicitly Set

This smell refers to when a developer does not specify the options “How” and “On”
during a Pandas merge operation.

Data Cleaning Readability

Missing the Mask of In-
valid Value

When a developer uses the function “tf.clip()”(or similar) in a deep learning model, the
value of certain variables could vary unexpectedly, causing invalid operations.

Model Training Defect Proneness

NaN Equivalence Compar-
ison Misused

This smell refers to when a developer uses the function “ np.nan” to compare a data
frame value with a NaN value.

Data Cleaning Defect Proneness

No Scaling before Scaling-
Sensitive Operation

This smell occurs when a developer does not use the feature scale function after some
sensitive operation.

Feature Engineering Defect Proneness

Pytorch Call Method Mis-
used

This smell regards when a developer uses to forward the input to the network the
function. “self.net.forward()”

Model Training Robustness

Randomness Uncon-
trolled

This smell occurs when a developer does not explicitly set the random seed in the
training process.

Model Training & Model Evaluation Reproducibility

TensorArray Not Used If a developer initializes an array using the function “tf.constant” and assigns a value in
a loop operation, it is necessary to use “tf.TensorArray()” avoiding possible errors.

Model Training Efficiency & Defect Proneness

Threshold-Dependent
Validation

This smell refers to when a developer combines dependent (e. g., F1-score) and indepen-
dent (e. g., RUC) metrics to evaluate the performance of the machine learning model.

Model Evaluation Robustness

Training / Evaluation
Mode Improper Toggling

In deep learnin code, it is crucial to call the training mode at the correct location to
prevent the oversight of forgetting to switch back to the inference mode after the training
step.

Model Training Defect Proneness

Unnecessary Iteration This smell regards when a developer uses a loop operation rather than the corresponding
Pandas function.

Data Cleaning Efficiency

The state-of-the-art in the context of AI-enabled Systems underlines a

lack of knowledge of the empirical investigation of code smells that can

arise during the building of AI-enabled Systems. In this respect, code smell

identification still represents one of the most challenging tasks for a soft-

ware engineer who builds complex software systems daily. The increased

focus of the software engineering community on code smells mixed with
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the increased adoption of AI worldwide opened the door to identifying

possible “AI-specifics code smells” i. e., code smells that can appear in the

AI pipeline. Zhang et al. [395] recently released a catalog of 22 AI-CSs by

empirically analyzing white and grey literature.

Table 11.1 shows the AI-CSs identified by the authors, their description,

the pipeline stage they affect, and the quality aspects they impact.

To provide a tangible example of AI-CS, let consider Gradients Not

Cleared before Backward Propagation. It refers to when a developer builds

a neural network in a loop operation and does not use the function

optimizer.zero_grad() to clear the old gradients at the end of each

iteration. Without this operation, the gradients will gather from all the

preceding backward calls. This situation can lead to a gradient explosion,

causing a failure in the training process [363]. To mitigate this smell, the

function optimizer.zero_grad() should be used before the backpropa-

gation step. Listing 11.1 shows an example of Gradients Not Cleared before

Backward Propagation smell for the project TRANSFORMERS.1 We added an

extra line (in green) to indicate how to refactor the smell in the taxonomy

of Zhang et al. [395].

1https://github.com/huggingface/transformers/blob/main/examples/res
earch_projects/bertology/run_bertology.py

https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertology/run_bertology.py
https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertology/run_bertology.py
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for step, inputs in enumerate(tqdm(eval_dataloader,

desc="Iteration", disable=args.local_rank not in [-1,

0])):

for k, v in inputs.items():

optimizer.zero_grad()

4 inputs[k] = v.to(args.device)

outputs = model(**inputs, head_mask=head_mask)

loss, logits, all_attentions = (

outputs[0],

outputs[1],

9 outputs[-1],

)

loss.backward() # Back propagate to populate the

gradients in the head mask

Listing 11.1: Example of Gradients Not Cleared before Backward Propagation

in the Transformer project.

Privacy by Design: Challenges and New Opportunities

The continuous generation of sensitive data provided by AI-enabled Sys-

tems (as discussed in previous chapters) quickly changes the perspective

of how user data needs to be exchanged, generating important concerns

about quality aspects that can, in turn, encourage users to abandon the

software system prematurely due to lack of reliability. In this respect, a

promising approach to mitigate possible premature software dismissal due

to privacy concerns is the so-called “Privacy by Design” (PbD) frame-

work. The term refers to proactive techniques for embedding privacy-

preserving mechanisms in the systems lifecycle (i. e., from requirement

elicitation to maintenance) [58].

The framework establishes seven fundamental principles:2

2https://www.iso.org/standard/84977.html

https://www.iso.org/standard/84977.html
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P R O A C T I V E , N O T R E A C T I V E ; P R E V E N TAT I V E N O T R E M E D I A L . This

principle refers to preventing privacy issues in software systems before

they appear. Proactive procedures aimed to prevent data breaches

include: I) high-security level standards, II) the demonstrability of

these high-security standards at all the stakeholders involved, and III)

analyzing the current internal company policies to identify possible

privacy weaknesses in protocols.

P R I VA C Y B Y D E F A U LT. Software systems that use sensitive data must en-

sure high privacy levels by embedding privacy mechanisms as default

settings without asking users to enable specific privacy-preserving set-

tings. This category includes: I) Collection limitation: the software system

must collect data only using legal and clear procedures; II) Data mini-

mization: The software system must collect only the minimum amount

of data required to guarantee a correct system workflow; III) Use, reten-

tion & disclosure limitation: The collected data must be used only for

the purpose than to which the user has agreed. Data that are no longer

needed must be deleted; IV) Security: The data exchange must be only

made using secure encryption protocols.

P R I VA C Y E M B E D D E D I N T O D E S I G N . Data and privacy protection in

websites, mobile apps, or software development is emphasized. It’s not

just an add-on feature but should be embedded seamlessly throughout

the design process. This requires a privacy-first mindset where every

decision prioritizes functionality and safeguarding user privacy.

F U L L F U N C T I O N A L I T Y – P O S I T I V E - S U M , N O T Z E R O – S U M . A fatalis-

tic outlook is incompatible with the concept of Privacy by Design. Those

who believe trade-offs between user experience or security protocols

are necessary to adopt a zero-sum mentality. Conversely, those who

seamlessly integrate privacy into all design aspects take a positive-sum

approach. These innovators are likely to witness their brands flourish in

a landscape where privacy is not merely a legal requirement but also a

significant factor influencing market dynamics.
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E N D - T O - E N D S E C U R I T Y – L I F E C Y C L E P R O T E C T I O N . Privacy by De-

sign guarantees the security of personal data throughout its entire life-

cycle, from collection to destruction after serving its intended purpose.

This comprehensive protection underscores the interdisciplinary nature

of Privacy by Design, which relies on security best practices to ensure

end-to-end data security. By upholding confidentiality, data integrity,

and accessibility throughout its duration with the company, Privacy by

Design ensures robust data protection at every processing stage.

V I S I B I L I T Y A N D T R A N S PA R E N C Y – K E E P I T O P E N . Openly communi-

cating privacy policies and procedures to users fosters accountability

and trust. Privacy by Design entails documenting and communicating

actions clearly, consistently, and transparently. It reflects a collective

commitment to privacy as a responsibility, underscored by the team’s

dedication. This commitment should be reinforced by an accessible and

efficient process for users to submit and resolve complaints, along with

independent verification of policies and commitments to users.

R E S P E C T F O R U S E R P R I VA C Y – K E E P I T U S E R - C E N T R I C . Respecting

user privacy entails prioritizing their privacy interests and implementing

safeguards and features to protect them. This respect guides every

design decision, recognizing that the optimal user experience prioritizes

privacy. It involves empowering users to manage their data and actively

involving them in the process, thereby putting control in their hands.

To concretize the Privacy by Design concept, the software engineering

community proposes a number of reusability design solutions focused

on privacy coined the definition of “Privacy Patterns”. The idea behind

privacy Patterns is to provide a catalog of possible reusability solutions

to preserve privacy in all the activities that involve stakeholders.3 In this

respect, Lenhard et al. [194] in 2017 conducted a literature review on the

adoption of privacy patterns in software systems. Their results showed

that although Privacy by Design is a legal requirement, there is a lack of ev-

idence on the use of privacy patterns in practice. This lack of evidence can

3https://privacypatterns.org/

https://privacypatterns.org/
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be motivated by multiple considerations: I) Privacy patterns could require

knowledge about data treatments that are outside the normal competen-

cies of a software engineer; II) The applicability of these patterns could be

too elaborate, demotivating developers to implement them; and III) Th

lack of awareness of developers about the existence of these standards.

In this respect, a more concrete investigation of privacy patterns is re-

quired to comprehend the motivations that do not permit developers to

embed privacy patterns in software systems.
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Despite the effort spent by the software engineering community on code

quality and the elevated number of high-quality papers, there are still unex-

plored aspects and important limitations that allow difficult the definition

of Evolutionary Code Quality. While the body of knowledge on software

systems in the context of code quality is largely explored, previous studies

suffer from limitations related to I) a lack of investigation of how code

quality varies over time and II) the impact of reusability mechanisms on

code quality, and how code quality evolve in systems other than Java. We

performed four empirical investigations to address these limitations by

considering the most adopted reusability mechanisms i. e., , the program-

ming abstraction and design patterns, and an additional to comprehend

how code quality evolves in AI-enabled Systems. In the context of pro-

gramming abstraction (i. e., inheritance and delegation), we conducted

two empirical experiments. In the first one, we investigated their relation-

ship with code smells by selecting three well-known Java projects (i. e.,

JHotDraw, JEdit, and Apache Ant). Statistically, we assessed how program-

ming abstractions are related to the emergence of code smells from an

evolutionary standpoint. The main results of this experiment indicated

that, on the one hand, programming abstractions increase over time, not

statistically significant way. On the other hand, their adoption is often

positively related to the decrease of code smell severity (see Chapter 3

for more details). Still, from the programming abstractions standpoint,

we empirically investigated how these mechanisms vary over time and

how they are related to the increase of defect proneness and effort to fix

bugs. We selected 12 Java projects provided by Defects4J and over 44k

commits to perform this. From the evolutionary standpoint, our results

corroborated our previous work, showing that programming abstractions

vary over time but without a specific pattern, i. e., the patterns seem to

209



210 C O N C L U S I O N

be project-dependent. Furthermore, we discovered that programming ab-

stractions are statistically significant for the above-mentioned tasks (see

Chapter 4). Changing the reusability mechanism, we also investigated how

design patterns are related to the emergence of code smells. We selected

15 Java projects with at least one design pattern and over 500 releases.

Our findings showed that classes that participate in design patterns are

often affected by code smells, and sometimes, there is a positive statistical

correlation between the presence of specific design pattern instances (e. g.,

Bridge, Singleton, and Template Method) and the arising of specific code

smells (e. g., God Class). This study showed that specific design pattern

instances should be better planned to avoid sub-optimal implementations

that could stimulate the presence of specific code smells (see Chapter 5).

Lastly, we explored code smell variation and the motivations for develop-

ers to introduce code smells in AI-enabled Systems over time. Specifically,

to conduct our experiment, we selected 200 AI-enabled systems provided

by NICHE [372] and analyzed I) the smell frequencies, II) the smell density,

III) the survival time, and IV) The activities most frequently lead devel-

opers to introduce code smells in AI-enabled systems. The findings of

this work indicated that code smells Python-specific (e. g., Complex List

Comprehension and Long Ternary Conditional) are the most frequent

and long-lived smells and that the smell variation shows instability pat-

terns of “increase-decrease” over time. Lastly, in the majority of cases, the

introduction of smells is due to evolutionary activities (see Chapter 6).

We also investigated code quality attributes by focusing on security and

privacy aspects in systems developed using emerging technologies, specif-

ically, a Systematic Literature Review (SLR) and an empirical study were

performed. We performed a Systematic Literature Review (see Chapter 8 to

comprehend how artificial intelligence is related to privacy in IoT systems.

Our main objectives were to investigate I) What the domains where IoT de-

vices work are. II) The artificial intelligence techniques used by researchers

to deal with privacy in IoT environments, III) What datasets and tasks

did researchers investigate when considering privacy attributes are. Our

findings indicated that most of the time, the primary studies do not specify
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the domain where these devices work, suggesting that their applicability

could be domain-agnostic; the most frequent AI techniques applied to

discover privacy issues is the Support Vector Machine (SVM), and often

the datasets selected are not fitted to use in a real-world scenario (e. g.,

toy datasets), and, lastly, the more frequent tasks are related to network

attacks and malware detection.

From the empirical viewpoint, we empirically compare three static anal-

ysis vulnerability tools for mobile apps. We selected over 6,500 real mobile

apps, investigating the vulnerability types detectable by static analysis

tools, the analyzability of mobile apps, the frequency of detection of vul-

nerabilities, and the complementary of static analysis tools to detect vul-

nerabilities. Our results indicated that the existing automatic static analysis

tools only partially cover the OWASP top-10 of mobile vulnerability; most

times, static analysis tools fail to detect vulnerability due to configuration

errors. Tools can detect different vulnerabilities with different frequencies,

and the best configuration to obtain an all-encompassing overview of

vulnerability is by using a combination of multiple tools (see Chapter 9).

The empirical studies discussed in this thesis contribute to advancing

the state-of-the-art in the context of code quality, taking into account code

quality from an evolutionary standpoint.

Although the mentioned studies increase the state-of-the-art in code

quality context, the topic needs future studies to comprehend what aspects

practitioners should monitor to improve code quality attributes over time,

and simultaneously, researchers need to investigate other unexplored

domains to comprehend how code quality varies over time.
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