
www.meteconferences.org

On the Evolution of Inheritance and Delegation Mechanisms and
Their impact on Code Quality

Introduction

Methodology

Results RQ. 1.3

Results RQ1.1

Results RQ.1.2

Discussion

Developers tend to increase the use of inheritance 
and delegation over time: this may suggest that code 
reuse is indeed are levant matter for developers, 
which may be worth of further investigations. 
Nonetheless, such an increase does not turn to be 
statistically significant.

Conclusion

Acknowledgements

Contact Information

Gemma is partially supported by the European 
Commission grant no. 825040 (RADON). Fabio is 
supported by the Swiss National Science Foundation 
through the SNF Project No.PZ00P2 186090 (TED)

Giammaria Giordano

Giammaria Giordano, Antonio Fasulo, Gemma Catolino, Fabio Palomba, Filomena Ferrucci, Carmine Gravino
giagiordano@unisa.it, a.fasulo@student.unisa.it gcatolinotilburguniversity.edu, fpalomba@unisa.it, fferrucci@unisa.it, 

cgravino@unisa.it

RQ.1.2 The adoption of specification inheritance is 
stable over time. The only exception was JHOTDRAW, 
that preferred to use different reusability mechanisms 
while defining a new milestone

RQ11.The use of implementation inheritance increases 
over time, even if not in a statistically significant manner

RQ. 1.3. The adoption of delegations increases over time, 
but not in a statistically significant way. The exception is 
the one of JHOTDRAW, where the trend observed 
suggests a progressive reluctance to this mechanism 
which might be worth of studying in the future.

Results RQ. 2

The research community should invest 
some effort in understanding the 
developer’s perspective on the use of 
abstraction mechanisms.

In most cases, the correct adoption of inheritance and 
delegation positively related to the decrease of code 
smell severity.

Inheritance and delegation mechanisms can be 
used by practitioners as instruments to decrease 
the severity of code smells. Researchers might be 
interested in devising novel semi-automated tools 
that might support practitioners in employing 
these abstraction mechanisms.

In some cases, we observed that inheritance and 
delegation may lead to instability ,i.e., they 
simultaneously increase and decrease the code smell 
severity.

Researchers should consider the definition of 
qualitative or mixed-method studies through 
which understand what are the boundaries 
between a correct and incorrect use of 
inheritance and delegation mechanisms.

In this paper, we investigated the evolution of reusability 
mechanisms and their impact on the variation of code 
smell severity. Our results revealed that the adoption of 
inheritance and delegation increases over time, even 
though not in a statistically significant manner. At the 
same time, such an evolution does have an impact on 
code smells: our statistical approach found inheritance 
and delegation metrics to significantly impact the 
likelihood of the severity of the code smells considered 
to vary. Often, such a variation can be considered 
positive, meaning that a proper adoption of inheritance 
and delegation reduces the severity of code smells.

Email: giagiordano@unisa.it
broke31.github.io/giammaria-giordano/
https://www.instagram.com/broke31sf/
https://it.linkedin.com/in/giammaria-
giordano

Software reusability refers to the development practice through 
which developers make use of existing code when implementing 
new functionalities.
Object-Oriented (OO) programming languages ,e.g., JAVA, provide 
developers with various mechanisms supporting code reusability: 
examples are design patterns, the use of third-party libraries, and 
programming abstractions.
Focusing on JAVA, there are two well-known abstraction 
mechanisms such as inheritance and delegation.
Inheritance is the process by which one class takes the property of 
another class: the new classes, known as derived or children's 
classes, inherit the attributes and/or the behavior of the pre-existing 
classes, which are referred to as base, super, or parent classes. 
Delegation is, instead, the mechanism through which a class uses 
an object instance of another class by forwarding it messages and 
letting it performing actions. 

In addition, the sub-optimal adoption of inheritance and delegation 
mechanisms had led to the definition and investigation of 
reusability-specific code smells.

This paper builds on this line of research by proposing an empirical 
analysis of how inheritance and delegation mechanisms evolve 
over time as well as their effects of software quality evolution.
More particularly, we first mine evolutionary data pertaining to 15 
releases of three open-source projects. Then, we statistically 
compare the number of inheritance and delegation mechanisms 
implemented over subsequent releases in order to assess the trend 
followed by the adoption of those metrics. Finally, we build a 
statistical model relating inheritance and delegation metrics, as well 
as other confounding factors, to the variation of code smell severity, 
in an effort of understanding the impact of reusability metrics on the 
likelihood of code smells to become more/less severe over time.

RQ1.1. How does source code reuse in terms of 
implementation inheritance vary in software evolution?

RQ1.2. How does reuse in terms of specification inheritance 
vary in software evolution?

RQ1.3. How does reuse in terms of delegation vary in 
software evolution?

RQ2. How do source code reusability mechanisms impact the 
severity of code smells over time?

Mann-Whitney test and Cliff’s 
Delta (δ) was applied

Mann-Whitney test and Cliff’s 
Delta (δ) was applied

Mann-Whitney test and Cliff’s 
Delta (δ) was applied

It is important to recognize that the decrease of the CK metric 
values— considered as control variables in our models —
correlate well with the decreasing of code smell intensity. 

The goal of the empirical study was to assess how inheritance 
and delegation mechanisms evolve over time and how they 
impact the severity of code smells during software evolution, with 
the purpose of understanding the extent to which reusability 
mechanisms applied by developers may provide indications on 
the future quality of source code.
RQ1.How do developers adopt source code reusability 
mechanisms during software evolution?
RQ2.How do source code reusability mechanisms impact the 
severity of code smells over time?
The context of the empirical study consisted of 15 releases of 
three JAVA systems such as JHOTDRAW, APACHE ANT, and 
JEDIT
The first step of our empirical study was concerned with the 
computation of reusability metrics and, specifically, the adoption 
of specification inheritance, implementation inheritance, and 
delegation.
RQ1: we analysed the distributions of the three metrics denoting 
the reuse—Inhimpl, Inhspec, and Del— to understand how these 
evolve over time.
For each subsequent release, Ri and Rj, we applied non-
parametric statistical tests to verify whether the distribution of 
each reusability metric differed between Ri and Rj. First, we 
applied the Mann-Whitney test: the choice was due to the 
sample size and the non-normality of the distributions 
considered. Second, we complemented the analysis with the 
application of the Cliff’s Delta (δ), and finally we normalized the 
values of the reusability metrics by LOC. The results were 
intended to be statistically significant α= 0.05.
RQ2. we defined a statistical model relating reusability metrics 
and other control factors to the increase/decrease of code smell 
severity. we first selected the actual code smell types 
investigated. These were: Good Class, Spaghetti Code, 
Complex Class, and Class Data Should be Private. We 
computed the differences between the actual metric values and 
the corresponding thresholds used by DECOR;(2) We 
normalized the obtained differences in the range [0;1] using the 
min-max strategy; and (3) We computed the final severity score 
as the mean of the normalized values. Given the nature of our 
categorical response variable, i.e., the categories “decrease", 
"stable”, and “increase”, we used a Multinomial Log Linear model 
to study the severity of the four code smells considered.

Research Questions

RQ. 2. In most cases, delegation and inheritance metrics 
positively correlate to the decrease of the code smell 
severity. Nonetheless, in some cases, their presence 
causes instability

mailto:giagiordano@unisa.it

