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When Code Smells Meet ML: On the Lifecycle of
ML-specific Code Smells in ML-enabled Systems
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A simple invocation of KMeans function
...Are we sure?

What if the default hyperparameters change due
to some library updates”



from sklearn. tmport KMeans
kmeans = KMeans( )

The model performance could change...




ML-specific code smell!
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ABSTRACT

The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied
in academia and applied in the industry to create business value.
However, there is a lack of guidelines for code quality in machine
learning applications. In particular, code smells have rarely been
studied in this domain. Although machine learning code is usually
integrated as a small part of an overarching system, it usually
plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This
paper proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey
literature, GitHub commits, and Stack Overflow posts. We pinpoint
each smell with a description of its context, potential issues in the
long run, and proposed solutions. In addition, we link them to their
respective pipeline stage and the evidence from both academic and
grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning
application code.
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1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-
plications [3], there are several concerns regarding the quality con-
trol and the inevitable technical debt growing in these systems [16].
Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily
aware of Software Engineering (SE) practices backgrounds and
there is a limited number of training and guidelines on machine
learning-related software development issues. Hence, software en-
gineering best practices are often overlooked when developing ma-
chine learning applications [12, 17]. Yet, previous research shows
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that practitioners are eager to learn more about engineering best
practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-
tem artifacts, including models and data. Researchers make efforts
to improve machine learning model quality [10] and data quality [7].
However, the quality assurance of machine learning code has not
been highlighted [12]. Recent work studied the code quality for
machine learning applications in a general way, finding some code
quality issues such as duplicated code [20] and violations of tradi-
tional naming convention [17]. These works highlighted the fact
that the existing code conventions do not necessarily fit the context
of machine learning applications. For example, the typical math
notation in data science tasks clashes with the naming conventions
of Python [20]. Thus, we argue that more research is needed to
accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,
the quality of the code is essential. Low-quality code can lead to
catastrophic consequences. In the meantime, different from tradi-
tional software, machine learning code quality is more challenging
to evaluate and control. Low-quality code can lead to silent pitfalls
that exist somewhere that affect the software quality, which takes
a lot of time and effort to discover [22]. Therefore, it is non-trivial
to improve the code quality during the development process and
consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code
smells and anti-patterns. When we talk about code smells in this
paper, we refer them to the pitfalls that we can inspect at the code
level but not at the data or model level. We use the term "pitfall" to
represent issues that degrade the software quality. Listing 1 shows
an example of such pitfalls using Python and the Pandas library.
In the red (-) part of the listing, an inefficient loop is created. A
better alternative is highlighted in green (+), using Pandas built-in
API to replace the loop, which operates faster. While some alter-
native solutions might lead to improvements in runtime efficiency,
other solutions might be essential to prevent problems in the long
run. For example, previous work shows that code smells affect the
maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []

for index, row in df.iterrows();
result.append(row[@] + 1)

result = pd.DataFrame(result)

result df .add (1)

With the concern of improving machine learning application
code quality and easing the machine learning development process,
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RL to improve on the processing power or accuracy of an
existing solution as an immediate goal, but set aside middle
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Abstract—Machine Learning (ML), including Deep Learning
(DL), systems, i.c., those with ML capabilities, are pervasive in
today’s data-driven society. Such systems are complex: they are
comprised of ML models and many subsystems that support
learning processes. As with other complex systems, ML systems
are prone to classic technical debt issues, especially when such
systems are long-lived, but they also exhibit debt specific to these
systems. Unfortunately, there is a gap of knowledge in how ML
systems actually evolve and are maintained. In this paper, we fill
this gap by studying refactorings, i.c., source-to-source semantics-
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open-source ML systems. We set out to discover (i) the Kinds of

refactorings—both specific and tangential to ML—performed,

(i1) whether particular refactorings occurred more often in
model code vs. other supporting subsystems, (iii) the types of
technical debt being addressed and whether they correspond
to established ML-specific technical debt [1], and (iv) whether
any new—potentially generalizable—MIL-specific refactorings
and technical debt categories could be derived.
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Abstract—Artificial Intelligence (AI) and Machine Learning which we amalgamate into ‘code smells’ for the rest of this
(ML) are pervasive in the current computer science landscape. paper. Research has shown that the attributes of quality most

Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects

affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces

in the source code, refactoring opportunities, and violations of the cost of maintenance [71-
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Understanding Developer Practices and Code Smells
Diffusion in Al-Enabled Software: A Preliminary Study
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Abstract

To deal with continuous change requests and the strict time-to-market, practitioners and big companies
constantly update their software systems to meet users’ requirements. This practice force developers
to release immature products, neglecting best practices to reduce delivery times. As a possible result,
technical debt can arise, i.e., potential design issues that can negatively impact software maintenance
and evolution and, in turn, increase both the time-to-market and costs. Code smells—sub-optimal
design decisions identifiable by computing software metrics and providing a general overview of code
quality —are common symptoms of technical debt. While previous research focused on code smells
primarily considering them in the context of Java, the growing popularity of Python, particularly for
developing artificial intelligence (AI)-Enabled systems, calls for additional investigations. This preliminary
analysis addresses this gap by exploring the diffusion of Python-specific code smells, and the activities
performed by developers that induce the introduction of code smells in their systems. To perform
our preliminary investigation, we selected 200 AI-Enabled systems available in the NicHE dataset; We
extracted 10,611 information on the releases using PYDRILLER, and PYSMELL to extract information about
code smells. The results reveal several insights: 1) Code smells related to object-oriented principles are
rarely detected in Python; 2) Complex List Comprehension is the most prevalent and the most long-alive
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Abstract
To deal with continuous change requests and the strict time-to-market, |
constantly update their software systems to meet users’ requirements.
to release immature products, neglecting best practices to reduce delivery 1
technical debt can arise, i.e., potential design issues that can negatively i
and evolution and, in turn, increase both the time-to-market and costs.
design decisions identifiable by computing software metrics and providipg=<§
quality —are common symptoms of technical debt. While previous
primarily considering them in the context of Java, the growing pop
developing artificial intelligence (AI)-Enabled systems, calls for additiona
analysis addresses this gap by exploring the diffusion of Python-specif

performed by developers that induce the introduction of code smell

our preliminary investigation, we selected 200 AI-Enabled systems av: -
extracted 10,611 information on the releases using PYDRILLER, and PyS
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Abstract—Technical debt is a metaphor introduced by Cunningham to indicate “not quite right code which we postpone making it
right”. One noticeable symptom of technical debt is represented by code smells, defined as symptoms of poor design and
implementation choices. Previous studies showed the negative impact of code smells on the comprehensibility and maintainability of
code. While the repercussions of smells on code quality have been empirically assessed, there is still only anecdotal evidence on
when and why bad smells are introduced, what is their survivability, and how they are removed by developers. To empirically
corroborate such anecdotal evidence, we conducted a large empirical study over the change history of 200 open source projects.
This study required the development of a strategy to identify smell-introducing commits, the mining of over half a million of commits,
and the manual analysis and classification of over 10K of them. Our findings mostly contradict common wisdom, showing that most
of the smell instances are introduced when an artifact is created and not as a result of its evolution. At the same time, 80 percent of
smells survive in the system. Also, among the 20 percent of removed instances, only 9 percent are removed as a direct
consequence of refactoring operations.
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1 INTRODUCTION
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time possible [14], [22], [42], [47], [70]. Bad code smells (shortly  they are removed [14]. This represents an obstacle for an effec-
“code smells” or “smells”), i.e., symptoms of poor designand tive and efficient management of technical debt. Also, under-
implementation choices [27], represent one important factor standing the typical life-cycle of code smells and the actions
contributing to technical debt, and possibly affecting the undertaken by developers to remove them is of paramount
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1 INTRODUCTION

Machine Learning (ML) evolved through the emergence of com-
plex software integrating ML modules, defined as ML-enabled sys-
tems [13]. Self-driving cars, voice assistance instruments, or con-
versational agents like ChatGPT' are just some examples of the
successful integration of ML within software engineering projects.

However, the strict time-to-market and change requests pres-
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Abstract—Machine learning (ML) has gained much atten-
tion and been incorporated into our daily lives. While there
are numerous publicly available ML projects on open source
platforms such as GitHub, there have been limited attempts in
filtering those projects to curate ML projects of high quality. The
limited availability of such high-quality dataset poses an obstacle
in understanding ML projects. To help clear this obstacle, we
present NICHE, a manually labelled dataset consisting of 572
ML projects. Based on evidences of good software engineering
practices, we label 441 of these projects as engineered and 131
as non-engineered. This dataset can help researchers understand
the practices that are followed in high-quality ML projects. It can
also be used as a benchmark for classifiers designed to identify
engineered ML projects.

Index Terms—Engineered Software Project, Machine Learn-
ing, Python, Open Source Projects

I. INTRODUCTION

There are many valuable pieces of information stored in
a version control system of a project; they include: source
code, documentation, issue reports, test cases, list of contrib-
utors, etc. Researchers mine these software repositories to
get useful insights related to how bugs are fixed [1], how
developers collaborate [2] and so on. With the abundance of
the open source repositories in GitHub, researchers can mine
for insights and validate hypotheses on a large corpus of data.
However, Kalliamvakou et al. showed that most repositories
in Github are of low-quality [3], [4], which can lead to wrong
and biased conclusions. To avoid skewed findings, researchers
usually take some measures to filter out low-quality projects,
e.g., by choosing projects with a high number of stars (which
is considered to reflect the projects’ popularity). Unfortunately,
popularity may not be correlated with project quality [5].
Therefore, Munaiah et al. propose an approach to find high-
quality software projects, more specifically; by identifying
engineered software projects [6]. Such projects are essential
for mining software repository (MSR) research, as they allow
for high-quality findings to be uncovered (from high-quality
data).

Machine learning (ML) projects are becoming increasingly
popular and play essential roles in various domain, e.g., code
processing [7], [8], self-driving cars, speech recognition [9],
etc. Despite widespread usage and popularity, only a few
research works try to examine Al and ML projects to identify
unique properties, development patterns, and trends. Gonzalez

et al. [10] find that the Al & ML community has unique
characteristics that should be considered in future software
engineering and MSR research. For example, more support
is needed for Python as the main programming language,
and there are significant differences between internal and
external contributors in AI & ML projects. We coin a term for
such research: Mining Machine Learning Repository (MLR).
Similar to conventional MSR research, MLR also requires
high-quality projects. In GitHub, there are many tutorials,
resource pages, courseworks and toy projects that are related to
ML; some of which are very popular but unsuitable for MLR
research. To facilitate MLR research, we present a curated
dataset of ENgIneered MaCHine LEarning Projects in Python
(NICHE). We first automatically identify projects in GitHub
that: (1) use one of the popular ML libraries, and (2) satisfy
some basic quantitative quality metrics. This process returns
572 ML projects from GitHub. Next, we manually analyze
the 572 ML projects and label them as engineered or not
engineered. This dataset can be used as the raw material for
MLR research, or as the benchmark for evaluating classifiers
designed to identify engineered ML projects.

We label the dataset manually to ensure high quality and
accurate labels. Our criteria for assessing an ML project
are rooted in Munaiah et al. work |6]. We check 8 distinct
dimensions of a project (architecture, community, CI, docu-
mentation, history, issues, license and unit testing) to evaluate
whether the project is engineered or not. Out of the 572
projects we collected, 441 projects are labelled as engineered
ML projects, and 131 projects are labelled as non-engineered
ML projects. There are several related datasets in the literature.
Datasets from [6] and [11] have labels indicating whether
a project is engineered or not, but they do not contain ML
projects. Gonzalez et al. [10] collected a dataset of ML & Al
projects, but these projects are not comprehensively assessed
based on their adoption of good software engineering prac-
tices. They only eliminate tutorials, homework assignments
and so on. We make our dataset publicly availabl@.

The rest of this paper is organized as follow. Section
2 describes the methodology used to collect and filter the
dataset, as well as how the dataset is stored. Section 3 gives
an overview of the dataset. In Section 4, we propose some
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We label the dataset manually to ensure high quality and
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dimensions of a project (architecture, community, CI, docu-
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How will we analyze the results?
RQO: Prevalence

We will statistically assess the differences between smells by
considering: the kinds of smells, the project’s size, and the use of
CIl considering only the last commit

Kinds of Smells : Wilcoxon Test

g{ot 0

ﬂ? CodeSmile Project’s Size : Friedman Test

Smell

Last Release Detector

Use of CI : Wilcoxon Test




How will we analyze the results?
RQ1: When are introduced

We will run CodeSmile commit by commit to discover when a
code smell is introduced In ML-enabled systems

O

Smell

Commit Detector




How will we analyze the results?
RQ2: What are the tasks during the introduction

We will analyze commit messages for each commit and label
them by applying a keyword pattern-matching

E CodeSmile #/) New Smell Identified A“al'\)l’zzsi‘;r:m“

Smell

Commit Detector




How will we analyze the results?
RQ3: When and How are removed

We want to run CodeSmile to discover when a code smell is
removed and what task performed during its removal

E CodeSmile // ) Smell Removed Anall\)llzzsigr:mit

Smell

AL Detector




How will we analyze the results?
RQ4: Survivability

We will combine the information of the previous RQs to identify the
survivability time of ML-CS

/// Smell Introduced

O
CodeSmile =3 Survivability

Smell
Detector

/// Smell Removed




Thanks!
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