EEEEEEEEEEEEEEEEEEE
SSSSSSS

When Code Smells Meet ML: On the Lifecycle of
ML-specific Code Smells in ML-enabled Systems

Gilberto Recupito, Giammaria Giordano, Filomena Ferrucci, Dario Di Nucci, Fabio Palomba

&
I@

i

from sklearn.cluster import KMeans
kmeans = KMeans()

from sklearn.cluster import KMeans
kmeans = KMeans()

from sklearn.cluster import KMeans
kmeans = KMeans()

' V¥ O CKIEAArn KIViIeANECS
! : ...‘W_ ,A“‘ : :‘ l --..."' 2 .\"\ | - ;; — J\ |) ' . t .."(, ‘:‘4....: :’ » 'J'I. [i - r\‘

A simple invocation of KMeans function
...Are we sure?

What if the default hyperparameters change due
to some library updates”

from sklearn. tmport KMeans
kmeans = KMeans()

The model performance could change...

ML-specific code smell!

Haiyin Zhang
haiyin.zhang@ing.com
Al for Fintech Research, ING
Amsterdam, Netherlands

ABSTRACT

The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied
in academia and applied in the industry to create business value.
However, there is a lack of guidelines for code quality in machine
learning applications. In particular, code smells have rarely been
studied in this domain. Although machine learning code is usually
integrated as a small part of an overarching system, it usually
plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This
paper proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey
literature, GitHub commits, and Stack Overflow posts. We pinpoint
each smell with a description of its context, potential issues in the
long run, and proposed solutions. In addition, we link them to their
respective pipeline stage and the evidence from both academic and
grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning
application code.

KEYWORDS

Code Smell, Anti-pattern, Machine Learning, Code Quality, Techni-
cal Debt

ACM Reference Format:

Haiyin Zhang, Luis Cruz, and Arie van Deursen. 2022. Code Smells for Ma-
chine Learning Applications. In Ist Conference on Al Engineering - Software
Engineering for AI (CAIN’22), May 16-24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3522664.3528620

1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-
plications [3], there are several concerns regarding the quality con-
trol and the inevitable technical debt growing in these systems [16].
Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily
aware of Software Engineering (SE) practices backgrounds and
there is a limited number of training and guidelines on machine
learning-related software development issues. Hence, software en-
gineering best practices are often overlooked when developing ma-
chine learning applications [12, 17]. Yet, previous research shows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05...$15.00
https://doi.org/10.1145/3522664.3528620

Luis Cruz
L.Cruz@tudelft.nl
Delft University of Technology
Delft, Netherlands

Background and Context

Code Smells for Machine Learning Applications

Arie van Deursen
Arie.vanDeursen@tudelft.nl
Delft University of Technology
Delft, Netherlands

that practitioners are eager to learn more about engineering best
practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-
tem artifacts, including models and data. Researchers make efforts
to improve machine learning model quality [10] and data quality [7].
However, the quality assurance of machine learning code has not
been highlighted [12]. Recent work studied the code quality for
machine learning applications in a general way, finding some code
quality issues such as duplicated code [20] and violations of tradi-
tional naming convention [17]. These works highlighted the fact
that the existing code conventions do not necessarily fit the context
of machine learning applications. For example, the typical math
notation in data science tasks clashes with the naming conventions
of Python [20]. Thus, we argue that more research is needed to
accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,
the quality of the code is essential. Low-quality code can lead to
catastrophic consequences. In the meantime, different from tradi-
tional software, machine learning code quality is more challenging
to evaluate and control. Low-quality code can lead to silent pitfalls
that exist somewhere that affect the software quality, which takes
a lot of time and effort to discover [22]. Therefore, it is non-trivial
to improve the code quality during the development process and
consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code
smells and anti-patterns. When we talk about code smells in this
paper, we refer them to the pitfalls that we can inspect at the code
level but not at the data or model level. We use the term "pitfall" to
represent issues that degrade the software quality. Listing 1 shows
an example of such pitfalls using Python and the Pandas library.
In the red (-) part of the listing, an inefficient loop is created. A
better alternative is highlighted in green (+), using Pandas built-in
API to replace the loop, which operates faster. While some alter-
native solutions might lead to improvements in runtime efficiency,
other solutions might be essential to prevent problems in the long
run. For example, previous work shows that code smells affect the
maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []

for index, row in df.iterrows();
result.append(row[@] + 1)

result = pd.DataFrame(result)

result df .add (1)

With the concern of improving machine learning application
code quality and easing the machine learning development process,

Haiyin Zhang
haiyin.zhang@ing.com
Al for Fintech Research, ING
Amsterdam, Netherlands

ABSTRACT

The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied
in academia and applied in the industry to create business value.
However, there is a lack of guidelines for code quality in machine
learning applications. In particular, code smells have rarely been
studied in this domain. Although machine learning code is usually
integrated as a small part of an overarching system, it usually
plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This
paper proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey
literature, GitHub commits, and Stack Overflow posts. We pinpoint
each smell with a description of its context, potential issues in the
long run, and proposed solutions. In addition, we link them to their
respective pipeline stage and the evidence from both academic and
grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning
application code.

KEYWORDS

Code Smell, Anti-pattern, Machine Learning, Code Quality, Techni-
cal Debt

ACM Reference Format:

Haiyin Zhang, Luis Cruz, and Arie van Deursen. 2022. Code Smells for Ma-
chine Learning Applications. In Ist Conference on Al Engineering - Software
Engineering for AI (CAIN’22), May 16-24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3522664.3528620

1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-
plications [3], there are several concerns regarding the quality con-
trol and the inevitable technical debt growing in these systems [16].
Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily
aware of Software Engineering (SE) practices backgrounds and
there is a limited number of training and guidelines on machine
learning-related software development issues. Hence, software en-
gineering best practices are often overlooked when developing ma-
chine learning applications [12, 17]. Yet, previous research shows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05...$15.00
https://doi.org/10.1145/3522664.3528620

Luis Cruz
L.Cruz@tudelft.nl
Delft University of Technology
Delft, Netherlands

Background and Context

Code Smells for Machine Learning Applications

Arie van Deursen
Arie.vanDeursen@tudelft.nl
Delft University of Technology
Delft, Netherlands

that practitioners are eager to learn more about engineering best
practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-
tem artifacts, including models and data. Researchers make efforts
to improve machine learning model quality [10] and data quality [7].
However, the quality assurance of machine learning code has not
been highlighted [12]. Recent work studied the code quality for
machine learning applications in a general way, finding some code
quality issues such as duplicated code [20] and violations of tradi-
tional naming convention [17]. These works highlighted the fact
that the existing code conventions do not necessarily fit the context
of machine learning applications. For example, the typical math
notation in data science tasks clashes with the naming conventions
of Python [20]. Thus, we argue that more research is needed to
accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,
the quality of the code is essential. Low-quality code can lead to
catastrophic consequences. In the meantime, different from tradi-
tional software, machine learning code quality is more challenging
to evaluate and control. Low-quality code can lead to silent pitfalls
that exist somewhere that affect the software quality, which takes
a lot of time and effort to discover [22]. Therefore, it is non-trivial
to improve the code quality during the development process and
consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code
smells and anti-patterns. When we talk about code smells in this
paper, we refer them to the pitfalls that we can inspect at the code
level but not at the data or model level. We use the term "pitfall" to
represent issues that degrade the software quality. Listing 1 shows
an example of such pitfalls using Python and the Pandas library.
In the red (-) part of the listing, an inefficient loop is created. A
better alternative is highlighted in green (+), using Pandas built-in
API to replace the loop, which operates faster. While some alter-
native solutions might lead to improvements in runtime efficiency,
other solutions might be essential to prevent problems in the long
run. For example, previous work shows that code smells affect the
maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []

for index, row in df.iterrows();
result.append(row[@] + 1)

result = pd.DataFrame(result)

result df .add (1)

With the concern of improving machine learning application
code quality and easing the machine learning development process,

Haiyin Zhang
haiyin.zhang@ing.com
Al for Fintech Research, ING
Amsterdam, Netherlands

ABSTRACT

The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied
in academia and applied in the industry to create business value.
However, there is a lack of guidelines for code quality in machine
learning applications. In particular, code smells have rarely been
studied in this domain. Although machine learning code is usually
integrated as a small part of an overarching system, it usually
plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This
paper proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey
literature, GitHub commits, and Stack Overflow posts. We pinpoint
each smell with a description of its context, potential issues in the
long run, and proposed solutions. In addition, we link them to their
respective pipeline stage and the evidence from both academic and
grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning
application code.

KEYWORDS

Code Smell, Anti-pattern, Machine Learning, Code Quality, Techni-
cal Debt

ACM Reference Format:

Haiyin Zhang, Luis Cruz, and Arie van Deursen. 2022. Code Smells for Ma-
chine Learning Applications. In Ist Conference on Al Engineering - Software
Engineering for AI (CAIN’22), May 16-24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3522664.3528620

1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-
plications [3], there are several concerns regarding the quality con-
trol and the inevitable technical debt growing in these systems [16].
Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily
aware of Software Engineering (SE) practices backgrounds and
there is a limited number of training and guidelines on machine
learning-related software development issues. Hence, software en-
gineering best practices are often overlooked when developing ma-
chine learning applications [12, 17]. Yet, previous research shows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05...$15.00
https://doi.org/10.1145/3522664.3528620

Luis Cruz
L.Cruz@tudelft.nl
Delft University of Technology
Delft, Netherlands

Background and Context

Code Smells for Machine Learning Applications

Arie van Deursen
Arie.vanDeursen@tudelft.nl
Delft University of Technology
Delft, Netherlands

that practitioners are eager to learn more about engineering best
practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-
tem artifacts, including models and data. Researchers make efforts
to improve machine learning model quality [10] and data quality [7].
However, the quality assurance of machine learning code has not
been highlighted [12]. Recent work studied the code quality for
machine learning applications in a general way, finding some code
quality issues such as duplicated code [20] and violations of tradi-
tional naming convention [17]. These works highlighted the fact
that the existing code conventions do not necessarily fit the context
of machine learning applications. For example, the typical math
notation in data science tasks clashes with the naming conventions
of Python [20]. Thus, we argue that more research is needed to
accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,
the quality of the code is essential. Low-quality code can lead to
catastrophic consequences. In the meantime, different from tradi-
tional software, machine learning code quality is more challenging
to evaluate and control. Low-quality code can lead to silent pitfalls
that exist somewhere that affect the software quality, which takes
a lot of time and effort to discover [22]. Therefore, it is non-trivial
to improve the code quality during the development process and
consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code
smells and anti-patterns. When we talk about code smells in this
paper, we refer them to the pitfalls that we can inspect at the code
level but not at the data or model level. We use the term "pitfall" to
represent issues that degrade the software quality. Listing 1 shows
an example of such pitfalls using Python and the Pandas library.
In the red (-) part of the listing, an inefficient loop is created. A
better alternative is highlighted in green (+), using Pandas built-in
API to replace the loop, which operates faster. While some alter-
native solutions might lead to improvements in runtime efficiency,
other solutions might be essential to prevent problems in the long
run. For example, previous work shows that code smells affect the
maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []

for index, row in df.iterrows();
result.append(row[@] + 1)

result = pd.DataFrame(result)

result df .add (1)

With the concern of improving machine learning application
code quality and easing the machine learning development process,

Haiyin Zhang
haiyin.zhang@ing.com
Al for Fintech Research, ING
Amsterdam, Netherlands

ABSTRACT

The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied
in academia and applied in the industry to create business value.
However, there is a lack of guidelines for code quality in machine
learning applications. In particular, code smells have rarely been
studied in this domain. Although machine learning code is usually
integrated as a small part of an overarching system, it usually
plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This
paper proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey
literature, GitHub commits, and Stack Overflow posts. We pinpoint
each smell with a description of its context, potential issues in the
long run, and proposed solutions. In addition, we link them to their
respective pipeline stage and the evidence from both academic and
grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning
application code.

KEYWORDS

Code Smell, Anti-pattern, Machine Learning, Code Quality, Techni-
cal Debt

ACM Reference Format:

Haiyin Zhang, Luis Cruz, and Arie van Deursen. 2022. Code Smells for Ma-
chine Learning Applications. In Ist Conference on Al Engineering - Software
Engineering for AI (CAIN’22), May 16-24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3522664.3528620

1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-
plications [3], there are several concerns regarding the quality con-
trol and the inevitable technical debt growing in these systems [16].
Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily
aware of Software Engineering (SE) practices backgrounds and
there is a limited number of training and guidelines on machine
learning-related software development issues. Hence, software en-
gineering best practices are often overlooked when developing ma-
chine learning applications [12, 17]. Yet, previous research shows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05...$15.00
https://doi.org/10.1145/3522664.3528620

Luis Cruz
L.Cruz@tudelft.nl
Delft University of Technology
Delft, Netherlands

Background and Context

Code Smells for Machine Learning Applications

Arie van Deursen
Arie.vanDeursen@tudelft.nl
Delft University of Technology
Delft, Netherlands

that practitioners are eager to learn more about engineering best
practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-
tem artifacts, including models and data. Researchers make efforts
to improve machine learning model quality [10] and data quality [7].
However, the quality assurance of machine learning code has not
been highlighted [12]. Recent work studied the code quality for
machine learning applications in a general way, finding some code
quality issues such as duplicated code [20] and violations of tradi-
tional naming convention [17]. These works highlighted the fact
that the existing code conventions do not necessarily fit the context
of machine learning applications. For example, the typical math
notation in data science tasks clashes with the naming conventions
of Python [20]. Thus, we argue that more research is needed to
accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,
the quality of the code is essential. Low-quality code can lead to
catastrophic consequences. In the meantime, different from tradi-
tional software, machine learning code quality is more challenging
to evaluate and control. Low-quality code can lead to silent pitfalls
that exist somewhere that affect the software quality, which takes
a lot of time and effort to discover [22]. Therefore, it is non-trivial
to improve the code quality during the development process and
consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code
smells and anti-patterns. When we talk about code smells in this
paper, we refer them to the pitfalls that we can inspect at the code
level but not at the data or model level. We use the term "pitfall" to
represent issues that degrade the software quality. Listing 1 shows
an example of such pitfalls using Python and the Pandas library.
In the red (-) part of the listing, an inefficient loop is created. A
better alternative is highlighted in green (+), using Pandas built-in
API to replace the loop, which operates faster. While some alter-
native solutions might lead to improvements in runtime efficiency,
other solutions might be essential to prevent problems in the long
run. For example, previous work shows that code smells affect the
maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []

for index, row in df.iterrows();
result.append(row[@] + 1)

result = pd.DataFrame(result)

result df .add (1)

With the concern of improving machine learning application
code quality and easing the machine learning development process,

Abstract—Reinforcement Learning (RL) is being increasingly
used to learn and adapt application behavior in many domains,

auton
its aj
RL a
of su
conse
subog
for R
this h
proje
engin
Pythc
metri
in gel
conta
signif
comn
chain
agent
separ
the d

Ing
quali

Re

apprc
and ¢

State-

Prevalence of Code Smells in Reinforcement
Learning Projects

Nicolas Cardozo
Universidad de los Andes
Bogota, Colombia
n.cardozo @uniandes.edu.co

Ivana Dusparic
Trinity College Dublin

Dublin, Ireland
ivana.dusparic @tcd.ie

Christian Cabrera
University of Cambridge
Cambridge, UK
chc79@cam.ac.uk

RL to improve on the processing power or accuracy of an
existing solution as an immediate goal, but set aside middle

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

An Empirical Study of Refactorings and Technical
Debt in Machine Learning Systems

Yiming Tang’, Raffi Khatchadourian'*, Mehdi Bagherzadeh’, Rhia Singh®, Ajani Stewart’, Anita Raja’"
*CUNY Graduate Center, {CUNY Hunter College, Oakland University, “CUNY Macaulay Honors College
Email: ytang3@ gradcenter.cuny.edu, raffi.khatchadourian@ hunter.cuny.edu, mbagherzadeh @oakland.edu,
rhia.singh@ macaulay.cuny.edu, ajani.stewart42@ myhunter.cuny.edu, anita.raja@hunter.cuny.edu

Abstract—Machine Learning (ML), including Deep Learning
(DL), systems, i.c., those with ML capabilities, are pervasive in
today’s data-driven society. Such systems are complex: they are
comprised of ML models and many subsystems that support
learning processes. As with other complex systems, ML systems
are prone to classic technical debt issues, especially when such
systems are long-lived, but they also exhibit debt specific to these
systems. Unfortunately, there is a gap of knowledge in how ML
systems actually evolve and are maintained. In this paper, we fill
this gap by studying refactorings, i.c., source-to-source semantics-
Bt U oo 71 'l v, e e Balp SN DT (S " R »

L e P sl L e . —d Bsd W LA AP M-l PEa ot

open-source ML systems. We set out to discover (i) the Kinds of

refactorings—both specific and tangential to ML—performed,

(i1) whether particular refactorings occurred more often in
model code vs. other supporting subsystems, (iii) the types of
technical debt being addressed and whether they correspond
to established ML-specific technical debt [1], and (iv) whether
any new—potentially generalizable—MIL-specific refactorings
and technical debt categories could be derived.

Knowine the kinds of refactorines and technical debt

f-The-Art

The Prevalence of Code Smells in Machine

Learning projects

Bart van Oort"2, Luis Cruz2, Mauricio Aniche?, Arie van Deursen?
Delft University of Technology
L AI for Fintech Research, ING
2 Delft, Netherlands
bart.van.oort@ing.com, {l.cruz, m.f.aniche, arie.vandeursen } @tudelft.nl

Abstract—Artificial Intelligence (AI) and Machine Learning which we amalgamate into ‘code smells’ for the rest of this
(ML) are pervasive in the current computer science landscape. paper. Research has shown that the attributes of quality most

Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects

affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces

in the source code, refactoring opportunities, and violations of the cost of maintenance [71-

common coding ¢
most prevalent co
of 74 open-source
ran Pylint on th
code smells, pel
mainly showed ti
PEP8 convention
applicable to ML
notation. More i
obstructions to t
projects, primari
Python projects.
for correct usage
ML libraries suc|

Index Terms—.
code analysis, co

Artificial Inte
are pervasive in
Companies such
making use of
are difficult (if
Software Engine
recognition & 1
real-time video ti
and intercepting

Yet, as Sculle
hidden technical
fraction of real-

Understanding Developer Practices and Code Smells
Diffusion in Al-Enabled Software: A Preliminary Study

Giammaria Giordano’, Giusy Annunziata’, Andrea De Lucia’ and Fabio Palomba’

"University of Salerno (Italy) - SeSa Lab

Abstract

To deal with continuous change requests and the strict time-to-market, practitioners and big companies
constantly update their software systems to meet users’ requirements. This practice force developers
to release immature products, neglecting best practices to reduce delivery times. As a possible result,
technical debt can arise, i.e., potential design issues that can negatively impact software maintenance
and evolution and, in turn, increase both the time-to-market and costs. Code smells—sub-optimal
design decisions identifiable by computing software metrics and providing a general overview of code
quality —are common symptoms of technical debt. While previous research focused on code smells
primarily considering them in the context of Java, the growing popularity of Python, particularly for
developing artificial intelligence (AI)-Enabled systems, calls for additional investigations. This preliminary
analysis addresses this gap by exploring the diffusion of Python-specific code smells, and the activities
performed by developers that induce the introduction of code smells in their systems. To perform
our preliminary investigation, we selected 200 AI-Enabled systems available in the NicHE dataset; We
extracted 10,611 information on the releases using PYDRILLER, and PYSMELL to extract information about
code smells. The results reveal several insights: 1) Code smells related to object-oriented principles are
rarely detected in Python; 2) Complex List Comprehension is the most prevalent and the most long-alive

State-Of-The-Art

Prevalence of Code Smells in Reinforcement

Learning Projects

Nicolds Cardozo
Universidad de los Andes
Bogota, Colombia

proje
engin
Pythc
metri
in gel
conta
signif
comn
chain
agent
separ
the d

Ing
qualif

Re

apprc
and ¢

Ivana Dusparic
Trinity College Dublin
Dublin, Ireland

rﬁardozo@uniandes.edu.co ivana.dusEaric@tcd.ie chc79 gcam.ac.uk

Christian Cabrera
University of Cambridge
Cambridge, UK

The Prevalence of Code Smells in Machine

An Empirical Study of Refactorings and Technical
Debt in Machine Learning Systems

Yiming Tang’, Raffi Khatchadourian'*, Mehdi Bagherzadeh’, Rhia Singh®, Ajani Stewart’, Anita Raja’"
*‘CUNY Graduate Center, '{CUNY Hunter College, Oakland University, “CUNY Macaulay Honors College
Email: ytang3@ gradcenter.cuny.edu, raffi.khatchadourian@ hunter.cuny.edu, mbagherzadeh @oakland.edu,
rhia.singh@ macaulay.cuny.edu, ajani.stewart42@ myhunter.cuny.edu, anita.raja@ hunter.cuny.edu

Abstract—Machine Learning (ML), including Deep Learning
(DL), systems, i.c., those with ML capabilities, are pervasive in
today’s data-driven society. Such systems are complex: they are
comprised of ML models and many subsystems that support
learning processes. As with other complex systems, ML systems
are prone to classic technical debt issues, especially when such
systems are long-lived, but they also exhibit debt specific to these
systems. Unfortunately, there is a gap of knowledge in how ML
systems actually evolve and are maintained. In this paper, we fill
this gap by studying refactorings, i.c., source-to-source semantics-

R M S e U D e =2 N = S s - Bemit W LA N B GE-NT gl Rl A

open-source ML systems. We set out to discover (i) the Kinds of
refactorings—both specific and tangential to ML—performed,
(i) whether particular refactorings occurred more often in
model code vs. other supporting subsystems, (iii) the types of
technical debt being addressed and whether they correspond
to established ML-specific technical debt [1], and (iv) whether
any new—poltentially generalizable—MIL.-specific refactorings
and technical debt categories could be derived.

Knowine the kinds of refactorines and technical debt

projects, primari
Python projects.
for correct usage
ML libraries suc

Index Terms—
code analysis, co

Artificial Inte
are pervasive in
Companies such
making use of
are difficult (if
Software Engine
recognition & 1
real-time video ti
and intercepting

Yet, as Sculle
hidden technical
fraction of real-

"University of Salerno (Italy) - SeSa Lab

Learning projects

Bart van Qort"2, Luis Cruz2, Mauricio Aniche?, Arie van Deursen?

Delft University of Technology
L AI for Fintech Research, ING
2 Delft, Netherlands

bart.van.oort@ing.com, {l.cruz, m.f.aniche, arie.vandeursen } @tudelft.nl

Abstract
To deal with continuous change requests and the strict time-to-market, |
constantly update their software systems to meet users’ requirements.
to release immature products, neglecting best practices to reduce delivery 1
technical debt can arise, i.e., potential design issues that can negatively i
and evolution and, in turn, increase both the time-to-market and costs.
design decisions identifiable by computing software metrics and providipg=<§
quality —are common symptoms of technical debt. While previous
primarily considering them in the context of Java, the growing pop
developing artificial intelligence (AI)-Enabled systems, calls for additiona
analysis addresses this gap by exploring the diffusion of Python-specif

performed by developers that induce the introduction of code smell

our preliminary investigation, we selected 200 AI-Enabled systems av: -
extracted 10,611 information on the releases using PYDRILLER, and PyS

code smells. The results reveal several insights: 1) Code smells related = 2
rarely detected in Python; 2) Complex List Comprehension is the most y L j

IDEA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.43, NO.11, NOVEMBER 2017

When and Why Your Code Starts to Smell
Bad (and Whether the Smells Go Away)

Michele Tufano~, Student Member, IEEE, Fabio Palomba ™, Member, IEEE,
Gabriele Bavota ', Member, IEEE, Rocco Oliveto ', Member, IEEE, Massimiliano Di Penta, Member, IEEE,
Andrea De Lucia, Senior Member, IEEE, and Denys Poshyvanyk, Member, IEEE

Abstract—Technical debt is a metaphor introduced by Cunningham to indicate “not quite right code which we postpone making it
right”. One noticeable symptom of technical debt is represented by code smells, defined as symptoms of poor design and
implementation choices. Previous studies showed the negative impact of code smells on the comprehensibility and maintainability of
code. While the repercussions of smells on code quality have been empirically assessed, there is still only anecdotal evidence on
when and why bad smells are introduced, what is their survivability, and how they are removed by developers. To empirically
corroborate such anecdotal evidence, we conducted a large empirical study over the change history of 200 open source projects.
This study required the development of a strategy to identify smell-introducing commits, the mining of over half a million of commits,
and the manual analysis and classification of over 10K of them. Our findings mostly contradict common wisdom, showing that most
of the smell instances are introduced when an artifact is created and not as a result of its evolution. At the same time, 80 percent of
smells survive in the system. Also, among the 20 percent of removed instances, only 9 percent are removed as a direct
consequence of refactoring operations.

Index Terms—Code smells, empirical study, mining software repositories

*

1 INTRODUCTION

HE technical debt metaphor introduced by Cunningham empirically proven, there is still noticeable lack of empirical

[22] explains well the trade-offs between delivering the evidence related to how, when, and why they occur in soft-
most appropriate but still immature product, in the shortest ware projects, as well as whether, after how long, and how
time possible [14], [22], [42], [47], [70]. Bad code smells (shortly they are removed [14]. This represents an obstacle for an effec-
“code smells” or “smells”), i.e., symptoms of poor designand tive and efficient management of technical debt. Also, under-
implementation choices [27], represent one important factor standing the typical life-cycle of code smells and the actions
contributing to technical debt, and possibly affecting the undertaken by developers to remove them is of paramount

IDEA

IEEE TRANSACTIONS |

Wh
Ba When Code Smells Meet ML: On the Lifecycle of ML-specific
| Code Smells in ML-enabled Systems

Gabriele Bavotz
Ar

Gilberto Recupito Giammaria Giordano Filomena Ferrucci

Abstract—T Sesa Lab - University of Salerno Sesa Lab - University of Salerno Sesa Lab - University of Salerno
e Salerno, Italy Salerno, Italy Salerno, Italy

implementa

00d9. Wh“e t - . - . N o
i grecupito@unisa.it giagiordano@unisa.it fferrucci@unisa.it

corroborate s

e e Dario Di Nucci Fabio Palomba
of the smell n Sesa Lab - University of Salerno Sesa Lab - University of Salerno

consequence (¢ Salerno, Italy Salerno, Italy
Index Terms— ddinucci@unisa.it fpalomba@unisa.it

ABSTRACT 1 INTRODUCTION

1 INTRODUCTI Context. The adoption of Machine Learning (ML)-enabled sys- Machine Learning (ML) evolved through the emergence of com-
HE technicald tems is steadily increasing. Nevertheless, there is a shortage of plex software integrating ML modules, defined as ML-enabled sys-
(2] explains -specific quali hes, possibly b f th If-drivi ice assistance i :

most a . ML-specific quality assurance approaches, possibly because of the tems [13]. Self-driving cars, voice assistance instruments, or con

time possible [14], limited knowledge of how quality-related concerns emerge and versational agents like ChatGPT' are just some examples of the

_codesmellsTor ayolve in ML-enabled systems. Objective. We aim to investigate successful integration of ML within software engineering projects.
implementation cl

contributing to t the emergence and evolution of specific types of quality-related However, the strict time-to-market and change requests pres-

R

Abstract—T
right”. One no
implementat
code. While t
when and wh
corroborate s
This study req
and the manu
of the smell i
smells survive
consequence

Index Terms—

1 INTRODUCT

HE technical

[22] explains
most appropriate
time possible [14],
“code smells” or “
implementation
contributing to t

R — ————

Sesa Lab - University of Salerno

Salerno, Italy
grecupito@unisa.it

Sesa Lab - University of Salerno Sesa Lab - University of Salerno

Salerno, Italy Salerno, Italy
giagiordano@unisa.it fferrucci@unisa.it

Dario D1 Nucci
Sesa Lab - University of Salerno

Salerno, Italy

ddinucci@unisa.it

ABSTRACT

Context. The adoption of Machine Learning (ML)-enabled sys-

less, there is a shortage of
ML-specific quality assurance approac!

tems is steadily increasing. Neverthe

limited knowledge of how quality-re

hes, possibly because of the

ated concerns emerge and

evolve in ML-enabled systems. Objective. We aim to investigate
the emergence and evolution of specific types of quality-related

Fabio Palomba

Sesa Lab - University of Salerno
Salerno, Italy
fpalomba@unisa.it

1 INTRODUCTION

Machine Learning (ML) evolved through the emergence of com-
plex software integrating ML modules, defined as ML-enabled sys-
tems [13]. Self-driving cars, voice assistance instruments, or con-
versational agents like ChatGPT' are just some examples of the
successful integration of ML within software engineering projects.

However, the strict time-to-market and change requests pres-

ML-specific code smells

ML-enabled systems i.e. projects with at least one ML
component

Goal

Analyze the prevalence,
iIntroduction, removal, and

survival of ML-specific code
smells In ML-enabled systems

| RQ1

e e e e ——— _ ———— S _— = J— S . N

RQ2

e R ———————) — N ———— e — — - - S _

Research Questions

o

|
How are ML-specific code smells “

prevalent in ML-enabled systems? %

1
- —

|

e ————— e ——— —— —— —_— — ~ - S N _
- p— p— = . -

|

When are ML-specific code smells i‘
introduced in ML-enabled systems? |

the ML-CSs were introduced?

- p— —

| RQ3

RS . A A A =~ ee-——-ei e —— e ——— e — — — —_—

' RQ4

|
‘ _
— e e N —— - — _—— = B— - _ _ -

What tasks were performed when }‘
ﬂ

— — S— _— -

When and how ML-specific code
smells are removed in ML-enabled
systems’?

— — = —— =

How long do ML-specific code smells 1{
survive in ML-enabled systems?)i

Research Process

Projects
Selection :

NICHE: A Curated Dataset of Engineered Machine
Learning Projects in Python

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona Wee, Camellia Lok, Jack Phan,
Haodi Qi, Constance Tan, Qijin Tay, and David Lo
School of Computing and Information System, Singapore Management University
{ratnadiraw.2020,zyang,ferdianthung,sqsim.2018,fiona.wee.2018 camellialok.2017 jack.phan.2018 } @smu.edu.sg
{haodi.qi.2017 hytan.2018,qijin.tay.2018,davidlo } @ smu.edu.sg

Abstract—Machine learning (ML) has gained much atten-
tion and been incorporated into our daily lives. While there
are numerous publicly available ML projects on open source
platforms such as GitHub, there have been limited attempts in
filtering those projects to curate ML projects of high quality. The
limited availability of such high-quality dataset poses an obstacle
in understanding ML projects. To help clear this obstacle, we
present NICHE, a manually labelled dataset consisting of 572
ML projects. Based on evidences of good software engineering
practices, we label 441 of these projects as engineered and 131
as non-engineered. This dataset can help researchers understand
the practices that are followed in high-quality ML projects. It can
also be used as a benchmark for classifiers designed to identify
engineered ML projects.

Index Terms—Engineered Software Project, Machine Learn-
ing, Python, Open Source Projects

I. INTRODUCTION

There are many valuable pieces of information stored in
a version control system of a project; they include: source
code, documentation, issue reports, test cases, list of contrib-
utors, etc. Researchers mine these software repositories to
get useful insights related to how bugs are fixed [1], how
developers collaborate [2] and so on. With the abundance of
the open source repositories in GitHub, researchers can mine
for insights and validate hypotheses on a large corpus of data.
However, Kalliamvakou et al. showed that most repositories
in Github are of low-quality [3], [4], which can lead to wrong
and biased conclusions. To avoid skewed findings, researchers
usually take some measures to filter out low-quality projects,
e.g., by choosing projects with a high number of stars (which
is considered to reflect the projects’ popularity). Unfortunately,
popularity may not be correlated with project quality [5].
Therefore, Munaiah et al. propose an approach to find high-
quality software projects, more specifically; by identifying
engineered software projects [6]. Such projects are essential
for mining software repository (MSR) research, as they allow
for high-quality findings to be uncovered (from high-quality
data).

Machine learning (ML) projects are becoming increasingly
popular and play essential roles in various domain, e.g., code
processing [7], [8], self-driving cars, speech recognition [9],
etc. Despite widespread usage and popularity, only a few
research works try to examine Al and ML projects to identify
unique properties, development patterns, and trends. Gonzalez

et al. [10] find that the Al & ML community has unique
characteristics that should be considered in future software
engineering and MSR research. For example, more support
is needed for Python as the main programming language,
and there are significant differences between internal and
external contributors in AI & ML projects. We coin a term for
such research: Mining Machine Learning Repository (MLR).
Similar to conventional MSR research, MLR also requires
high-quality projects. In GitHub, there are many tutorials,
resource pages, courseworks and toy projects that are related to
ML; some of which are very popular but unsuitable for MLR
research. To facilitate MLR research, we present a curated
dataset of ENgIneered MaCHine LEarning Projects in Python
(NICHE). We first automatically identify projects in GitHub
that: (1) use one of the popular ML libraries, and (2) satisfy
some basic quantitative quality metrics. This process returns
572 ML projects from GitHub. Next, we manually analyze
the 572 ML projects and label them as engineered or not
engineered. This dataset can be used as the raw material for
MLR research, or as the benchmark for evaluating classifiers
designed to identify engineered ML projects.

We label the dataset manually to ensure high quality and
accurate labels. Our criteria for assessing an ML project
are rooted in Munaiah et al. work |6]. We check 8 distinct
dimensions of a project (architecture, community, CI, docu-
mentation, history, issues, license and unit testing) to evaluate
whether the project is engineered or not. Out of the 572
projects we collected, 441 projects are labelled as engineered
ML projects, and 131 projects are labelled as non-engineered
ML projects. There are several related datasets in the literature.
Datasets from [6] and [11] have labels indicating whether
a project is engineered or not, but they do not contain ML
projects. Gonzalez et al. [10] collected a dataset of ML & Al
projects, but these projects are not comprehensively assessed
based on their adoption of good software engineering prac-
tices. They only eliminate tutorials, homework assignments
and so on. We make our dataset publicly availabl@.

The rest of this paper is organized as follow. Section
2 describes the methodology used to collect and filter the
dataset, as well as how the dataset is stored. Section 3 gives
an overview of the dataset. In Section 4, we propose some

Ihitps://doi.org/10.6084/m9. figshare. 21967265

ML Projects

NICHE: A Curated Dataset of Engineered Machine

Learning Projects in Python

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona Wee, Camellia Lok, Jack Phan,
Haodi Qi, Constance Tan, Qijin Tay, and David Lo
School of Computing and Information System, Singapore Management University
{ratnadiraw.2020,zyang,ferdianthung,sqsim.2018,fiona.wee.2018 camellialok.2017 jack.phan.2018 } @smu.edu.sg
{haodi.qi.2017 hytan.2018,qijin.tay.2018,davidlo } @ smu.edu.sg

Abstract—Machine learning (ML) has gained much atten-
tion and been incorporated into our daily lives. While there
are numerous publicly available ML projects on open source
platforms such as GitHub, there have been limited attempts in
filtering those projects to curate ML projects of high quality. The
limited availability of such high-quality dataset poses an obstacle
in understanding ML projects. To help clear this obstacle, we
present NICHE, a manually labelled dataset consisting of 572
ML projects. Based on evidences of good software engineering
practices, we label 441 of these projects as engineered and 131
as non-engineered. This dataset can help researchers understand
the practices that are followed in high-quality ML projects. It can
also be used as a benchmark for classifiers designed to identify
engineered ML projects.

Index Terms—Engineered Software Project, Machine Learn-
ing, Python, Open Source Projects

1. INTRODUCTION

There are many valuable pieces of information stored in
a version control system of a project; they include: source
code, documentation, issue reports, test cases, list of contrib-
utors, etc. Researchers mine these software repositories to
get useful insights related to how bugs are fixed [1], how
developers collaborate [2] and so on. With the abundance of
the open source repositories in GitHub, researchers can mine
for insights and validate hypotheses on a large corpus of data.
However, Kalliamvakou et al. showed that most repositories
in Github are of low-quality [3], [4], which can lead to wrong
and biased conclusions. To avoid skewed findings, researchers
usually take some measures to filter out low-quality projects,
e.g., by choosing projects with a high number of stars (which
is considered to reflect the projects’ popularity). Unfortunately,
popularity may not be correlated with project quality [5].
Therefore, Munaiah et al. propose an approach to find high-
quality software projects, more specifically; by identifying
engineered software projects [6]. Such projects are essential
for mining software repository (MSR) research, as they allow
for high-quality findings to be uncovered (from high-quality
data).

Machine learning (ML) projects are becoming increasingly
popular and play essential roles in various domain, e.g., code
processing [7], [8], self-driving cars, speech recognition [9],
etc. Despite widespread usage and popularity, only a few
research works try to examine Al and ML projects to identify
unique properties, development patterns, and trends. Gonzalez

et al. [10] find that the Al & ML community has unique
characteristics that should be considered in future software
engineering and MSR research. For example, more support
is needed for Python as the main programming language,
and there are significant differences between internal and
external contributors in AI & ML projects. We coin a term for
such research: Mining Machine Learning Repository (MLR).
Similar to conventional MSR research, MLR also requires
high-quality projects. In GitHub, there are many tutorials,
resource pages, courseworks and toy projects that are related to
ML; some of which are very popular but unsuitable for MLR
research. To facilitate MLR research, we present a curated
dataset of ENgIneered MaCHine LEarning Projects in Python
(NICHE). We first automatically identify projects in GitHub
that: (1) use one of the popular ML libraries, and (2) satisfy
some basic quantitative quality metrics. This process returns
572 ML projects from GitHub. Next, we manually analyze
the 572 ML projects and label them as engineered or not
engineered. This dataset can be used as the raw material for
MLR research, or as the benchmark for evaluating classifiers
designed to identify engineered ML projects.

We label the dataset manually to ensure high quality and
accurate labels. Our criteria for assessing an ML project
are rooted in Munaiah et al. work |6]. We check 8 distinct
dimensions of a project (architecture, community, CI, docu-
mentation, history, issues, license and unit testing) to evaluate
whether the project is engineered or not. Out of the 572
projects we collected, 441 projects are labelled as engineered
ML projects, and 131 projects are labelled as non-engineered
ML projects. There are several related datasets in the literature.
Datasets from [6] and [11] have labels indicating whether
a project is engineered or not, but they do not contain ML
projects. Gonzalez et al. [10] collected a dataset of ML & Al
projects, but these projects are not comprehensively assessed
based on their adoption of good software engineering prac-
tices. They only eliminate tutorials, homework assignments
and so on. We make our dataset publicly availabl@.

The rest of this paper is organized as follow. Section
2 describes the methodology used to collect and filter the
dataset, as well as how the dataset is stored. Section 3 gives
an overview of the dataset. In Section 4, we propose some

'hitps://doi.org/10.6084/m9. figshare.21967265

ML Proects

NICHE: A Curated Dataset of Engineered Machine

Learning Projects in Python

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona Wee, Camellia Lok, Jack Phan,
Haodi Qi, Constance Tan, Qijin Tay, and David Lo
School of Computing and Information System, Singapore Management University
{ratnadiraw.2020,zyang,ferdianthung,sqsim.2018,fiona.wee.2018 camellialok.2017 jack.phan.2018 } @smu.edu.sg
{haodi.qi.2017 hytan.2018,qijin.tay.2018,davidlo } @ smu.edu.sg

Abstract—Machine learning (ML) has gained much atten-
tion and been incorporated into our daily lives. While there
are numerous publicly available ML projects on open source
platforms such as GitHub, there have been limited attempts in
filtering those projects to curate ML projects of high quality. The
limited availability of such high-quality dataset poses an obstacle
in understanding ML projects. To help clear this obstacle, we
present NICHE, a manually labelled dataset consisting of 572
ML projects. Based on evidences of good software engineering
practices, we label 441 of these projects as engineered and 131
as non-engineered. This dataset can help researchers understand
the practices that are followed in high-quality ML projects. It can
also be used as a benchmark for classifiers designed to identify
engineered ML projects.

Index Terms—Engineered Software Project, Machine Learn-
ing, Python, Open Source Projects

I. INTRODUCTION

There are many valuable pieces of information stored in
a version control system of a project; they include: source
code, documentation, issue reports, test cases, list of contrib-
utors, etc. Researchers mine these software repositories to
get useful insights related to how bugs are fixed [1], how
developers collaborate [2] and so on. With the abundance of
the open source repositories in GitHub, researchers can mine
for insights and validate hypotheses on a large corpus of data.
However, Kalliamvakou et al. showed that most repositories
in Github are of low-quality [3], [4], which can lead to wrong
and biased conclusions. To avoid skewed findings, researchers
usually take some measures to filter out low-quality projects,
e.g., by choosing projects with a high number of stars (which
is considered to reflect the projects’ popularity). Unfortunately,
popularity may not be correlated with project quality [5].
Therefore, Munaiah et al. propose an approach to find high-
quality software projects, more specifically; by identifying
engineered software projects [6]. Such projects are essential
for mining software repository (MSR) research, as they allow
for high-quality findings to be uncovered (from high-quality
data).

Machine learning (ML) projects are becoming increasingly
popular and play essential roles in various domain, e.g., code
processing [7], [8], self-driving cars, speech recognition [9],
etc. Despite widespread usage and popularity, only a few
research works try to examine Al and ML projects to identify
unique properties, development patterns, and trends. Gonzalez

et al. [10] find that the Al & ML community has unique
characteristics that should be considered in future software
engineering and MSR research. For example, more support
is needed for Python as the main programming language,
and there are significant differences between internal and
external contributors in AI & ML projects. We coin a term for
such research: Mining Machine Learning Repository (MLR).
Similar to conventional MSR research, MLR also requires
high-quality projects. In GitHub, there are many tutorials,
resource pages, courseworks and toy projects that are related to
ML; some of which are very popular but unsuitable for MLR
research. To facilitate MLR research, we present a curated
dataset of ENgIneered MaCHine LEarning Projects in Python
(NICHE). We first automatically identify projects in GitHub
that: (1) use one of the popular ML libraries, and (2) satisfy
some basic quantitative quality metrics. This process returns
572 ML projects from GitHub. Next, we manually analyze
the 572 ML projects and label them as engineered or not
engineered. This dataset can be used as the raw material for
MLR research, or as the benchmark for evaluating classifiers
designed to identify engineered ML projects.

We label the dataset manually to ensure high quality and
accurate labels. Our criteria for assessing an ML project
are rooted in Munaiah et al. work |6]. We check 8 distinct
dimensions of a project (architecture, community, CI, docu-
mentation, history, issues, license and unit testing) to evaluate
whether the project is engineered or not. Out of the 572
projects we collected, 441 projects are labelled as engineered
ML projects, and 131 projects are labelled as non-engineered
ML projects. There are several related datasets in the literature.
Datasets from [6] and [11] have labels indicating whether
a project is engineered or not, but they do not contain ML
projects. Gonzalez et al. [10] collected a dataset of ML & Al
projects, but these projects are not comprehensively assessed
based on their adoption of good software engineering prac-
tices. They only eliminate tutorials, homework assignments
and so on. We make our dataset publicly availabl@.

The rest of this paper is organized as follow. Section
2 describes the methodology used to collect and filter the
dataset, as well as how the dataset is stored. Section 3 gives
an overview of the dataset. In Section 4, we propose some

Ihitps://doi.org/10.6084/m9. figshare. 21967265

ML Proects

“engineered” and “not engineered”

according to 8 dimensions including
Continuous Integration

NICHE: A Curated Dataset of Engineered Machine
Learning Projects in Python

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona Wee, Camellia Lok, Jack Phan,
Haodi Qi, Constance Tan, Qijin Tay, and David Lo

School of Computing and Information System, Singapore Management University
{ratnadiraw.2020,zyang,ferdianthung,sqsim.2018,fiona.wee.2018 camellialok.2017 jack.phan.2018 } @smu.edu.sg

Abstract—Machine learning (ML) has gained much atten-
tion and been incorporated into our daily lives. While there
are numerous publicly available ML projects on open source
platforms such as GitHub, there have been limited attempts in
filtering those projects to curate ML projects of high quality. The
limited availability of such high-quality dataset poses an obstacle
in understanding ML projects. To help clear this obstacle, we
present NICHE, a manually labelled dataset consisting of 572
ML projects. Based on evidences of good software engineering
practices, we label 441 of these projects as engineered and 131
as non-engineered. This dataset can help researchers understand
the practices that are followed in high-quality ML projects. It can
also be used as a benchmark for classifiers designed to identify
engineered ML projects.

Index Terms—Engineered Software Project, Machine Learn-
ing, Python, Open Source Projects

I. INTRODUCTION

There are many valuable pieces of information stored in
a version control system of a project; they include: source
code, documentation, issue reports, test cases, list of contrib-
utors, etc. Researchers mine these software repositories to
get useful insights related to how bugs are fixed [1], how
developers collaborate [2] and so on. With the abundance of
the open source repositories in GitHub, researchers can mine
for insights and validate hypotheses on a large corpus of data.
However, Kalliamvakou et al. showed that most repositories
in Github are of low-quality [3], [4], which can lead to wrong
and biased conclusions. To avoid skewed findings, researchers
usually take some measures to filter out low-quality projects,
e.g., by choosing projects with a high number of stars (which
is considered to reflect the projects’ popularity). Unfortunately,
popularity may not be correlated with project quality [5].
Therefore, Munaiah et al. propose an approach to find high-
quality software projects, more specifically; by identifying
engineered software projects [6]. Such projects are essential
for mining software repository (MSR) research, as they allow
for high-quality findings to be uncovered (from high-quality
data).

Machine learning (ML) projects are becoming increasingly
popular and play essential roles in various domain, e.g., code
processing [7], [8], self-driving cars, speech recognition [9],
etc. Despite widespread usage and popularity, only a few
research works try to examine Al and ML projects to identify
unique properties, development patterns, and trends. Gonzalez

{haodi.qi.2017 hytan.2018,qijin.tay.2018,davidlo } @ smu.edu.sg

et al. [10] find that the Al & ML community has unique
characteristics that should be considered in future software
engineering and MSR research. For example, more support
is needed for Python as the main programming language,
and there are significant differences between internal and
external contributors in AI & ML projects. We coin a term for
such research: Mining Machine Learning Repository (MLR).
Similar to conventional MSR research, MLR also requires
high-quality projects. In GitHub, there are many tutorials,
resource pages, courseworks and toy projects that are related to
ML; some of which are very popular but unsuitable for MLR
research. To facilitate MLR research, we present a curated
dataset of ENgIneered MaCHine LEarning Projects in Python
(NICHE). We first automatically identify projects in GitHub
that: (1) use one of the popular ML libraries, and (2) satisfy
some basic quantitative quality metrics. This process returns
572 ML projects from GitHub. Next, we manually analyze
the 572 ML projects and label them as engineered or not
engineered. This dataset can be used as the raw material for
MLR research, or as the benchmark for evaluating classifiers
designed to identify engineered ML projects.

We label the dataset manually to ensure high quality and
accurate labels. Our criteria for assessing an ML project
are rooted in Munaiah et al. work |6]. We check 8 distinct
dimensions of a project (architecture, community, CI, docu-
mentation, history, issues, license and unit testing) to evaluate
whether the project is engineered or not. Out of the 572
projects we collected, 441 projects are labelled as engineered
ML projects, and 131 projects are labelled as non-engineered
ML projects. There are several related datasets in the literature.
Datasets from [6] and [11] have labels indicating whether
a project is engineered or not, but they do not contain ML
projects. Gonzalez et al. [10] collected a dataset of ML & Al
projects, but these projects are not comprehensively assessed
based on their adoption of good software engineering prac-
tices. They only eliminate tutorials, homework assignments
and so on. We make our dataset publicly availablfﬂ.

The rest of this paper is organized as follow. Section
2 describes the methodology used to collect and filter the
dataset, as well as how the dataset is stored. Section 3 gives
an overview of the dataset. In Section 4, we propose some

'hitps://doi.org/10.6084/m9. figshare.21967265

ML Projects

“engineered” and “not engineered”
according to 8 dimensions including
Continuous Integration

Due to possible computational issues, we
want to select a statistically significant
sampling of 337 projects

Research Process

Data Extraction

®
CodeSmile

CS Detector

.\

Integration

PyDriller

Commit
History

Code Smell Detector

We want to build a static analyzer able to detect

ML-specific code smells starting from the catalog
proposed by Zhang et al.

_0®
CodeSmile

We plan to analyze
historical information
on over 400k commits

Research Process

Data Analysis

Prevalence of ML-CS

®
CodeSmile

CS Detector When ML-CS are introduced

What tasks were performed
during the introduction

.\

Integration

PyDriller

When and how ML-CS
are removed

Commit

How long do ML-CS survive
History

How will we analyze the results?
RQO: Prevalence

We will statistically assess the differences between smells by
considering: the kinds of smells, the project’s size, and the use of
CIl considering only the last commit

Kinds of Smells : Wilcoxon Test

g{ot 0

ﬂ? CodeSmile Project’s Size : Friedman Test

Smell

Last Release Detector

Use of CI : Wilcoxon Test

How will we analyze the results?
RQ1: When are introduced

We will run CodeSmile commit by commit to discover when a
code smell is introduced In ML-enabled systems

O

Smell

Commit Detector

How will we analyze the results?
RQ2: What are the tasks during the introduction

We will analyze commit messages for each commit and label
them by applying a keyword pattern-matching

E CodeSmile #/) New Smell Identified A“al'\)l’zzsi‘;r:m“

Smell

Commit Detector

How will we analyze the results?
RQ3: When and How are removed

We want to run CodeSmile to discover when a code smell is
removed and what task performed during its removal

E CodeSmile //) Smell Removed Anall\)llzzsigr:mit

Smell

AL Detector

How will we analyze the results?
RQ4: Survivability

We will combine the information of the previous RQs to identify the
survivability time of ML-CS

/// Smell Introduced

O
CodeSmile =3 Survivability

Smell
Detector

/// Smell Removed

Thanks!

lab

SESO

SOFTWARE ENGINEERING
SALERNO

Research Process

Projects : Data Extraction : Data Analysis

Selection E
@ . Prevalence of ML-CS
CodeSmile
CS Detector : When ML-CS are introduced

What tasks were performed
during the introduction

SCAN ME!
I’'m the paper!

Integration

PyDriller i

- When and how ML-CS

- are removed
Commit - How long do ML-CS survive
History .

DA< giagiordano@unisa.it

@ https://giammariagiordano.github.io/giammaria-giordano/

y @GiammariaGiord1

mailto:giagiordano@unisa.it

