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Background

The continuous Change Requests and the
stringent time-to-market force developers to
release immature products, putting aside best
practices to decrease the delivery time




Code Smells

A symptom of poor design that can lead to
Increased effort during both maintenance anad
evolution activities
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Abstract—Code smells are a popular mechanism to identify
structural design problems in software systems. Since it is
generally not feasible to fx all the smells arising in the code,
some of them are often postponed by developers to be resolved
in the future. One reason for this decision is that the improvement
of the code structure, to achieve modif ability goals, requires
extra effort from developers. Therefore, they might not always
spend this additional effort, particularly when they are focused on
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of design problems [4], [5], [6], [7]. Therefore, the occurrence
of smell agglomerations indicates that the technical debt is
increasing. A number of tools have been proposed for detecting
single instances of code smells (but not agglomerations) (8],
[9], [10]. Once detected, the smells can be fxed through a
number of refactoring strategies [3].

In an ideal world, f xing all smells would “pay” much of
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Abstract—Code smells are symptoms of poor design solutions
applied by programmers during the development of software
systems. While the research community devoted a lot of effort
to studying and devising approaches for detecting the traditional
code smells defined by Fowler, little knowledge and support is
available for an emerging category of Mobile app code smells.
Recently, Reimann et al. proposed a new catalogue of Android-
specific code smells that may be a threat for the maintainability
and the efficiency of Android applications. However, current
tools working in the context of Mobile apps provide limited
support and, more importantly, are not available for developers
interested in monitoring the quality of their apps. To overcome
these limitations, we propose a fully automated tool, coined
ADOCTOR, able to identify 15 Android-specific code smells from
the cataloone hv Reimann et al. An emnirical studv conducted
on
pro

defined by Reimann et al. [18]. These Android-specific smells
may threat several non-functional attributes of mobile apps,
such as security, data integrity, and source code quality [18].
As highlighted by Hetch et al. [19], these type of smells can
also lead to performance issues.

The aforementioned reasons highlight the need of having
specialized detectors that identify code smells in Mobile apps.
Hetch et al. [20] first faced the problem by devising PAPRIKA,
a code smell detector for Android apps. However, the tool is
able to detect a limited number of the Android-specific code
smells defined by Reimann et al. (just 4 out of the total 30),
and is not publicly available.
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Abstract

Software inspection is a known technique for improving soft-
ware quality. It involves carefully examining the code, the
design, and the documentation of software and checking
these for aspects that are known to be potentially problem-
atic based on past experience.

Code smells are a metaphor to describe patterns that are
generally associated with bad design and bad programming
practices. Originally, code smells are used to find the places
in software that could benefit from refactoring. In this paper,
we investigate how the quality of code can be automatically
assessed by checking for the presence of code smells and how
this approach can contribute to automatic code inspection.

We present an approach for the automatic detection and
visualization of code smells and discuss how this approach
can be used in the design of a software inspection tool. We il-
lustrate the feasibility of our approach with the development
of JCOSMO, a prototype code smell browser that detects and
visualizes code smells in JAVA source code. Finally, we show
how this tool was applied in a case study.

Keywords: software inspection, quality assurance, Java,
refactoring, code smells.

1. Introduction

Software inspection is a known technique for improving soft-
ware quality. It was first introduced in 1976 by Fagan [10]
and has since been reported on by numerous others, for ex-
ample [18, 13]. Software inspection involves carefully ex-
amining the code, the design, and the documentation of soft-
ware and checking these for aspects that are known to be
potentially problematic based on past experience.

It is generally accepted that the cost of repairing a bug is
much lower when that bug is found early in the development
cycle. One of the advantages of software inspection is that
the software is analysed before it is tested. Thus, potential
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problems are identified in the beginning of the cycle so that
they can be solved early, when it’s still cheap to fix them.

Traditionally, software inspection is a formal process that
involves labor-intensive manual analysis techniques such as
formal code reviews and structured walk-throughs. Inspec-
tion is a systematic and disciplined process that is guided by
well-defined rules. These strict requirements often backfire,
resulting in code inspections that are not performed well or
sometimes even not performed at all.

These problems are addressed by tools that automate the
software inspection process. We distinguish two approaches:

1. Tools that automate the inspection process, making it
easier to follow the guidelines and record the results.

2. Tools that perform automatic code inspection, relieving
the programmers of the manual inspection burden.

We concentrate on the second type: tools that perform auto-
matic inspection. Such tools are interesting since automatic
inspection and reporting on the code’s quality and confor-
mance to coding standards allows early (and repeated) de-
tection of signs of project deterioration. Early feedback en-
ables early corrections, thereby lowering the development
costs and increasing the chances for success.

1.1. Code smells

The existing tools that support automatic code inspection (for
example, the well-known C analyzer LINT [15]) tend to fo-
cus on improving code quality from a technical perspective.
The fewer bugs (or defects) there are present in a piece of
code, the higher the quality of that code. From this perspec-
tive, code inspection boils down to low-level bug-chasing
and we see this reflected in the tools which typically look
for problems with pointer arithmetic, memory (de)allocation,
null references, array bounds errors, etc.

In this paper, we will focus on a different aspect of code
quality: Inspired by the metaphor of “code smells” intro-
duced in the refactoring book [12], we review the code for
problems that are generally associated with bad program
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Abstract—Source code reuse is considered one of the holy grails
of modern software development. Indeed, it has been widely
demonstrated that this activity decreases software development
and maintenance costs while increasing its overall trustwor-
thiness. The Object-Oriented (O0O) paradigm provides differ-
ent internal mechanisms to favor code reuse, i.e., specification
inheritance, implementation inheritance, and delegation. While
previous studies investigated how inheritance relations impact
source code quality, there is still a lack of understanding of
their evolutionary aspects and, more particular, of how these
mechanisms may impact source code quality over time. To
bridge this gap of knowledge, this paper proposes an empirical
investigation into the evolution of specification inheritance, im-
plementation inheritance, and delegation and their impact on the
variability of source code quality attributes. First, we assess how
the implementation of those mechanisms varies over 15 releases
of three software systems. Second, we devise a statistical approach
with the aim of understanding how inheritance and delegation let
source code quality—as indicated by the severity of code smells—
vary in either positive or negative manner. The key results of the
study indicate that inheritance and delegation evolve over time,
but not in a statistically significant manner. At the same time,
their evolution often leads code smell severity to be reduced,
hence possibly contributing to improve code maintainability.

Index Terms—Software Reuse; Quality Metrics; Software
Maintenance and Evolution; Empirical Software Engineering.

I. INTRODUCTION

Software reusability refers to the development practice
through which developers make use of existing code when
implementing new functionalities [1], [2]. This is widely
considered as a best practice, as it leads developers to save
time, energy, and maintenance costs, other than relying on
source code that has been previously tested [3], [4].

Contemporary Object-Oriented (OO) programming lan-
guages, e.g., JAVA, provide developers with various mecha-
nisms supporting code reusability: examples are design pat-
terns [S], [6], the use of third-party libraries [7], [8], and
programming abstractions [9]. These latter, in particular, have
caught the attention of researchers since the rise of object-
orientation and were found to be a valuable element to increase
software quality and reusability [10], [11], [12], [13], [14].

When focusing on JAVA, there are two well-known abstrac-
tion mechanisms such as inheritance and delegation [15].

Inheritance is the process by which one class takes the
property of another class: the new classes, known as derived

or children classes, inherit the attributes and/or the behavior of
the pre-existing classes, which are referred to as base, super, or
parent classes. Delegation is, instead, the mechanism through
which a class uses an object instance of another class by
forwarding it messages and letting it performing actions [15].

The importance of inheritance and delegation has been
remarked multiple times by the research community. In 1994,
Chidamber and Kemerer [16] included in their Object-Oriented
metric suite the Depth of the Inheritance Tree (DIT) metric,
a measure of the number of classes that inherit from one
another. Later on, various metric catalogs proposed variations
of DIT as well as other inheritance metrics [17], [18], [19].
In addition, the sub-optimal adoption of inheritance and dele-
gation mechanisms had led to the definition and investigation
of reusability-specific code smells [20], [21], [22], [23]: as an
example, Fowler [24] defined the Refused Bequest and Middle
Man code smells, which refer to the poor use of inheritance
and delegation in Object-Oriented programs that might lead
to deteriorate their code quality [22], [25], [26], [27]. These
studies have also led to the definition of automated code smell
detection and refactoring approaches [28], [29], [30].

Still from an empirical standpoint, a number of studies
targeted the role of inheritance and delegation mechanisms for
monitoring software quality. In particular, researchers devoted
extensive effort on the understanding of the potential impact
of those mechanisms on software metrics [31], [32], [33],
maintainability effort and costs [34], [35], [36], [37], design
patterns [38], [39], change-proneness [40], [41], [42], [43],
and source code defectiveness [44], [45], [46], [47].

While the current body of knowledge provides compelling
evidence of the value of reusability mechanisms for the
analysis of source code quality properties, we can still identify
a noticeable research gap: as Mens and Demeyer [48] already
reported in the early 2000s, the long-term evolution of source
code quality metrics might provide a different perspective
of the nature of a software project, possibly revealing com-
plementary or even contrasting findings with respect to the
studies that investigated code metrics in a fixed point of
software evolution. To the best of our knowledge, Nasseri et
al. [49] were the only researchers studying the evolution of
reusability metrics. They specifically focused on the size of
the inheritance hierarchies and aimed at assessing whether
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DECOR: A Method for the Specification
and Detection of Code and Design Smells

Naouel Moha, Yann-Gaél Guéhéneuc, Laurence Duchien, and Anne-Frangoise Le Meur

Abstract—Code and design smells are poor solutions to recurring implementation and design problems. They may hinder the
evolution of a system by making it hard for software engineers to carry out changes. We propose three contributions to the research
field related to code and design smells: 1) DECOR, a method that embodies and defines all the steps necessary for the specification
and detection of code and design smells, 2) DETEX, a detection technique that instantiates this method, and 3) an empirical validation
in terms of precision and recall of DETEX. The originality of DETEX stems from the ability for software engineers to specify smells at a
high level of abstraction using a consistent vocabulary and domain-specific language for automatically generating detection algorithms.
Using DETEX, we specify four well-known design smells: the antipatterns Blob, Functional Decomposition, Spaghetti Code, and Swiss
Army Knife, and their 15 underlying code smells, and we automatically generate their detection algorithms. We apply and validate the
detection algorithms in terms of precision and recall on XERCES v2.7.0, and discuss the precision of these algorithms on 11 open-

source systems.

Index Terms—Antipatterns, design smells, code smells, specification, metamodeling, detection, Java.
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Abstract Software design problems are known and per-
ceived under many different terms, such as code smells,
flaws, non-compliance to design principles, violation of
heuristics, excessive metric values and anti-patterns, signi-
fying the importance of handling them in the construction
and maintenance of software. Once a design problem is iden-
tified, it can be removed by applying an appropriate refac-
toring, improving in most cases several aspects of quality
such as maintainability, comprehensibility and reusability.
This paper, taking advantage of recent advances and tools
in the identification of non-trivial code smells, explores the
presence and evolution of such problems by analyzing past
versions of code. Several interesting questions can be investi-
gated such as whether the number of problems increases with
the passage of software generations, whether problems van-
ish by time or only by targeted human intervention, whether
code smells occur in the course of evolution of a module or
exist right from the beginning and whether refactorings tar-
geting at smell removal are frequent. In contrast to previous
studies that investigate the application of refactorings in the
history of a software project, we attempt to analyze the evo-
lution from the point of view of the problems themselves. To
this end, we classify smell evolution patterns distinguishing
deliberate maintenance activities from the removal of design
problems as a side effect of software evolution. Results are
discussed for two open-source systems and four code smells.

Keywords Code smell - Refactoring - Software
repositories - Software history - Evolution
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1 Introduction

The design of software systems can exhibit several problems
which can be either due to inefficient analysis and design
during the initial construction of the software or more often,
due to software ageing, where software quality degenerates
over time [27]. Declining quality of evolving systems is also
something that is expected according to Lehman’s 7th law
of software evolution [18]. The importance that the software
engineering community places on the detection and resolu-
tion of design problems is evident from the multitude of terms
under which they are known. Some researchers view prob-
lems as non-compliance with design principles [20], viola-
tions of design heuristics [29], excessive metric values, lack
of design patterns [12] or even application of anti-patterns
[3].

According to Fowler [11], design problems appear as
“bad smells” at code or design level and the process of
removing them consists in the application of an appropri-
ate refactoring, i.e. an improvement in software structure
without any modification of its behavior. Refactorings have
been widely acknowledged mainly because of their simplic-
ity which allows the automation of their application. More-
over, despite their simplicity, the cumulative effect of succes-
sive refactorings on design quality can be significant. Their
popularity is also evident from the availability of numerous
tools that provide support for the application of refactorings
relieving the designers from the burden of their mechanics
[24].

According to the recommendations proposed by Lehman
and Ramil for software evolution planning [18], quality
should be continuously monitored as systems evolve. This
implies that past versions of a software system should be
analyzed to track changes in evolutionary trends. To this end,
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Java is not the most
used programming
language nowadays!
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Why this change of direction?




Why this change of direction?

Developers tend to use flexible programming
‘ languages to combine multiple paradigms




Why this change of direction?

Developers tend to use flexible programming
languages to combine multiple paradigms

Programming languages like Python can be easily
used to build Artificial Intelligence-Enabled Systems




Why this change of direction?

Developers tend to use flexible programming

The core of most Artificial Intelligence-Enabled
Systems (e.g., ChatGPT) is written in Python!

build Artificial Intelligence-Enabled Systems [~
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Python Code Smell Detection Using Machine
Learning

Does Python Smell Like Java?
Tool Support for Design Defect Discovery in Python
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Abstract

The context of this work is specification, detection and ultimately removal of harmful
code that are associated with defects in design and implementation of software. In partic
five code smells and four antipatterns previously defined in literature. Our inquiry is abi
nine design defects in source code written in Python programming language, which is sul
from all prior research, most of which concerns Java and other C-like languages. Our ag
software engineers: we have processed existing research literature on the topic, extracte
definitions of defects and their concrete implementation specifications, programmed the
let it loose on a huge test set obtained from open source code from thousands of GitH
it comes to knowledge, we have found that more than twice as many methods in Python
too long (statistically extremely longer than their neighbours within the same project
long parameter lists are seven times less likely to be found in Python code than in Java
found that Functional Decomposition, the way it was defined for Java, is not found in Pytt
Spaghetti Code and God Classes are extremely rare there as well. The grounding and the
results comes from the fact that we have performed our experiments on 32,058,823 lines of |
is by far the largest test set for a freely available Python parser. We have also designed the
a way that it aligned with prior research on design defect detection in Java in order to eas
we treat our own actions as a partial replication. Thus, the importance of the work is both
Python grammar of highest quality, applied to millions of lines of code, and in the desi;
tool which works on something else than Java.

ACM CCS 2012
= Software and its engineering - Parsers; Software defect analysis; Patterns;

Keywords Python, code smells, antipatterns, design defects, parsing, software analysis

Understanding metric-based detectable smells in Python software: A

comparative study
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ARTICLE INFO ABSTRACT

Keywords:

Python

Code smell

Detection strategy
Software maintainability

ability.

Context: Code smells are supposed to cause potential comprehension and mainte
development. Although code smells are studied in many languages, e.g. Java and Ci
or tool support addressing code smells in Python.

Objective: Due to the great differences between Python and static languages, the g
and detect code smells in Python programs and to explore the effects of Python s

Method: In this paper, we introduced ten code smells and established a metric-b
three different filtering strategies to specify metric thresholds (Experience-Basi
Strategy, and Tuning Machine Strategy). Then, we performed a comparative stu
detection strategies perform in detecting Python smells and how these smells aff
with different detection strategies. This study utilized a corpus of 106 Python projec
Results: The results showed that: (1) the metric-based detection approach perfor
smells and Tuning Machine Strategy achieves the best accuracy; (2) the three detec
different smell occurrences, and Long Parameter List and Long Method are more pr¢
several kinds of code smells are more significantly related to changes or faults in.
Conclusion: These findings reveal the key features of Python smells and also provide
detection strategy in detecting and analyzing Python smells.

1. Introduction

Code smells [2,14] are particular bad patterns in source code which
violate important principles of software design and implementation
issues. Particularly, code smells indicate when and what refactoring can
be applied [38,43-44]. It does not mean that no code smells are allowed
to appear, but rather that code smells are essential hints about bene-
ficial refactoring. Various studies have confirmed the effects of code
smells on different maintainability related aspects [54,61,62], espe-
cially changes [4-6,57-58], effort [7-9], modularity [55], compre-
hensibility [10,11], and defects [12,46,56-58].

Existing approaches of detecting code smells include metric-based
[1,16-18,26], machine learning [19-21], history-based [22-23], tex-
tual-based [60], and search-based [41] approaches. A large group of
code smells can be measured by software metrics to quantify their
characteristics, hence metric-based detection technique becomes the
most common way of detecting code smells. Measuring code smells

requires proper quantification means of desig
which raises a set of challenge. Above all, m
gineer mostly clueless concerning the ultim;
that it indicts. Credible thresholds are establis
metrics as an effective measurement instrum
challenge for metric-based detection techniq

Python [25] is a typical dynamic scripti
remarkably simple and expressive syntax. To
both a small and large scale, Python replaces
with short constructs, which allow Python
concepts in fewer lines of code than would be
In spite of multiple advantages of these cons
tures also bring in serious difficulty in progra
code in Python reduces readability and abus
fected by bad patterns [30-31]. As a result, c¢
occur in Python programs.

Due to the great differences between Pyt

Natthida Vatanapakorn, Chitsutha Soomlek® and Pusadee Seresangtakul®
Department of Computer Science, College of Computing, Khon Kaen University
Khon Kaen, Thailand
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Abstract—Python is an increasingly popular programming lan-
guage used in various software projects and domains. Code smells
in Python significantly influences the maintainability, understand-
ability, testability issues. This paper proposes a machine learning-
based code smell detection for Python programs. We trained
eight machine learning models with a dataset based on 115 open-
source Python projects, 39 class-level software metrics, and 22
function-level software metrics. We intended to identify five code
smell types in both class and function levels, i.e., long method,
long parameter list, large class long scope chaining, and long
based class list. Correlation-based feature selection (CFS) and
logistic regression-forward stepwise (conditional) selection were
employed to improve the performance of the model. This research
concluded with an empirical evaluation of the performance of the
machine learning approaches against the tuning machine method.
The results show that the machine learning method achieved
99.72% accuracy when identifying long method and long base
class list. The machine learning-based code smell detection also
outperformed the tuning machine method. Moreover, we also
found a set of high-impact features that contributed most when
identifying each type of code smell.

Index Terms—code smells, machine learning, Python

I. INTRODUCTION

Software maintenance is critical in software development
as software products are constantly changed to support user
requirements and new technology [1]. Therefore, software
maintenance will end after the software reaches its ’end
of life’. A common problem in software maintenance that
developers face is poorly-design code. As a result, the source
code is difficult to understand and hard to maintain. Martin
Fowler [2] defined code smells as a problem caused by design
flaws.

Researchers have proposed various techniques to detect
code smells in a program [3]-[8]. Machine learning is a widely
used technique for detecting code smells with promising
results [4], [9]-[14]. For examples, [4] and [9] demonstrated
that the random forest technique outperformed other classifiers
in detecting code smells. Furthermore, most of the studies
have used open-source software in the Java programming
language [10], whereas more recent and modern software
projects tend to incline towards Python [15]. Software projects
in Python also suffer from maintenance issues. As such, code
smell detection for the Python programming language will
play an important role in mitigating problems.

Compared to Java, there are a very limited number of studies
on code smell detection in Python projects. In recent works
relative to the research problem, we refer the readers to [16]-
[19]. Code smell detection is a complex task, due to the
lack of common definitions and subjectivity issues. Manual
detection by human experts requires a lot of effort and is time-
consuming and expensive.

In this research, we employ machine learning techniques to
capture the human perspectives on code smells and automati-
cally identify code smells in Python projects. We evaluated the
performance of eight supervised machine learning techniques;
decision tree [20], gradient boosted trees [21], random for-
est [22], support vector machine [23], k-nearest neighbors [24],
logistic regression [25], multilayer perceptron [26], and naive
bayes [27], when identifying long method, long parameter list,
large class, long base class list, and long scope chaining. In
addition, we compared the results produced by our best models
to that of the tuning machine method [17]. We also investigated
the high impact features that contributed most in this research
context.

The main contributions of our research are as follows:

« We proposed eight machine learning models for detecting
five types of code smells in Python and their performance
evaluation results. We also compared the results with
those from the tuning machine method [17].

We created a dataset by collecting 61 software metrics
in class and function levels from 115 Python open-
source projects using Python static code analysis tools;
Pysmell [17], Understand (SciTools) [28], Cohesion [29],
and our handcraft program.

We applied feature selection techniques, like correlation-
based feature selection (CFS) and logistic regression-
forward stepwise (LRFS) to find the most relevant fea-
tures for each type of code smell.

We made the dataset and source code publicly available at

https://github.com/NatthidaW/pythoncodesmell to support the
research community with reproducible content.

II. RELATED WORK

Many researchers have applied machine learning techniques
to code smell detection with promising results [30]-[34].
Examples of machine learning techniques used to identify code
smells are the decision tree [31]-[34], random forest [30], [33],
[34], logistic regression [34], and ensemble methods [35].
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Detecting Code Smells in Python Programs
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Abstract—As a traditional dynamic language, Python is
increasingly used in various software engineering tasks. However,
due to its flexibility and dynamism, Python is a particularly
challenging language to write code in and maintain.
Consequently, Python programs contain code smells which
indicate potential comprehension and maintenance problems.
With the aim of supporting refactoring strategies to enhance
maintainability, this paper describes how to detect code smells in
Python programs. We introduce 11 Python smells and describe
the detection strategy. We also implement a smell detection tool
named Pysmell and use it to identify code smells in five real
world Python systems. The results show that Pysmell can detect
285 code smell instances in total with the average precision of
97.7%. It reveals that Large Class and Large Method are most
prevalent. Our experiment also implies Python programs may be
suffering code smells further.

Keywords—Python;
refactoring

code smells; program maintenance;

I. INTRODUCTION

The notion of code smells was introduced initially by
Fowler [3], who presented 22 code smells and associated them
with refactoring strategies. Code smells are particular bad
patterns in source code, which violate important principles in
implementation and design issues. The reason for widespread
research on code smells is that it suggests an approach of
evaluating maintainability. Particularly, code smells can
indicate when and what refactoring can be applied. In recent
decades, related work mainly focuses on empirical studies
which investigated the effects of code smells on different
maintainability related aspects, such as changes [4-6], effort [7-
9], comprehensibility [10,11] and defects [12]. Various
empirical evidences on these effects highlight the essential role
of code smell detection in supporting program maintenance and
guaranteeing program quality.

Early smell detection approaches tend to be manual [13],

which have efficiency limitations [14, 15]. Automated
detection allows code smells to be analyzed and detected
consistently in large scale code bases. To this end, a wide
variety of detection approaches have been proposed. Existing
approaches of automated smell detection consist of metrics
[16-18], machine learning [19-21] and some others [22, 23].

Although there are a range of approaches and tools of
detecting various code smells, no work focuses on Python
smells. Python is a typical dynamic scripting language [25],
many of whose features make it so appealing for rapid

development and prototyping. Python has a remarkably simple
and expressive syntax, making length of code much shorter
than many others. Due to active communities and copious
documentation, quite a lot of programmers begin learning
programming with Python in fact. However, because of its
flexibility and dynamism, Python is a particularly challenging
language to write code in and maintain. In particular, opposite
to design patterns [1], code smells in Python programs reduce
maintainability and cause difficulties in evolving and
enhancing the Python software [2].

By detecting potential code smells in Python programs, the
final goal of this study is to support refactoring strategies to
enhance maintainability and to enable the study of their
impacts on software quality and software maintenance. To
address this problem, this paper introduces 11 code smells in
Python programs and determines the metrics and criteria used
for identifying them. Meanwhile, we try to give alternatives to
those smells to improve the code. The scope of these smells is
a part collection of the most unfortunate but occasionally subtle
issues recognized in Python code. There are always reasons to
use some of these Python smells, but in general using these
code smells makes for less readable, more buggy, and less
“Pythonic” (or idiomatic) code. In order to evaluate our work,
we check five real world Python systems by our detection tool
named Pysmell to investigate the prevalence, distribution and
evolvement of Python smells. Results of our experiment can
help researchers focus their effort on developing effective
detection and elimination strategies and tools for those Python
smells which are most prevalent or most easily ignored.

Our work makes the following main contributions:

e We present 11 code smells in Python programs and
respective metrics and criteria for detection, including 5
generic ones and 6 additional ones.

We propose the metric-based strategy in smell detection
and implement a detection tool named Pysmell which
allows user configuration for Python programs. We
evaluate the performance of Pysmell in detecting five
Python systems. The results show that Pysmell can find
285 code smell instances with the average precision of
97.7% and the average recall of 100%.

We explore the prevalence of code smells and find out
that Long Method and Long Class are the most
prevalent ones in Python programs. We also observe the
changes of smell instances in different releases of each
Python system. The results show that the number of
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Abstract—As a traditional dynamic language, Python is
increasingly used in various software engineering tasks. However,
due to its flexibility and dynamism, Python is a particularly
challenging language to write code in and maintain.
Consequently, Python programs contain code smells which
indicate potential comprehension and maintenance problems.
With the aim of supporting refactoring strategies to enhance
maintainability, this paper describes how to detect code smells in
Python programs. We introduce 11 Python smells and describe
the detection strategy. We also implement a smell detection tool
named Pysmell and use it to identify code smells in five real
world Python systems. The results show that Pysmell can detect
285 code smell instances in total with the average precision of
97.7%. It reveals that Large Class and Large Method are most
prevalent. Our experiment also implies Python programs may be
suffering code smells further.
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L INTRODUCTION

The notion of code smells was introduced initially by
Fowler [3], who presented 22 code smells and associated them
with refactoring strategies. Code smells are particular bad
patterns in source code, which violate important principles in
implementation and design issues. The reason for widespread
research on code smells is that it suggests an approach of
evaluating maintainability. Particularly, code smells can
indicate when and what refactoring can be applied. In recent
decades, related work mainly focuses on empirical studies
which investigated the effects of code smells on different
maintainability related aspects, such as changes [4-6], effort [7-
9], comprehensibility [10,11] and defects [12]. Various
empirical evidences on these effects highlight the essential role
of code smell detection in supporting program maintenance and
guaranteeing program quality.

Early smell detection approaches tend to be manual [13],
which have efficiency limitations [14, 15]. Automated
detection allows code smells to be analyzed and detected
consistently in large scale code bases. To this end, a wide
variety of detection approaches have been proposed. Existing
approaches of automated smell detection consist of metrics
[16-18], machine learning [19-21] and some others [22, 23].

Although there are a range of approaches and tools of
detecting various code smells, no work focuses on Python
smells. Python is a typical dynamic scripting language [25],
many of whose features make it so appealing for rapid
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development and prototyping. Python has a remarkably simple
and expressive syntax, making length of code much shorter
than many others. Due to active communities and copious
documentation, quite a lot of programmers begin learning
programming with Python in fact. However, because of its
flexibility and dynamism, Python is a particularly challenging
language to write code in and maintain. In particular, opposite
to design patterns [1], code smells in Python programs reduce
maintainability and cause difficulties in evolving and
enhancing the Python software [2].

By detecting potential code smells in Python programs, the
final goal of this study is to support refactoring strategies to
enhance maintainability and to enable the study of their
impacts on software quality and software maintenance. To
address this problem, this paper introduces 11 code smells in
Python programs and determines the metrics and criteria used
for identifying them. Meanwhile, we try to give alternatives to
those smells to improve the code. The scope of these smells is
a part collection of the most unfortunate but occasionally subtle
issues recognized in Python code. There are always reasons to
use some of these Python smells, but in general using these
code smells makes for less readable, more buggy, and less
“Pythonic” (or idiomatic) code. In order to evaluate our work,
we check five real world Python systems by our detection tool
named Pysmell to investigate the prevalence, distribution and
evolvement of Python smells. Results of our experiment can
help researchers focus their effort on developing effective
detection and elimination strategies and tools for those Python
smells which are most prevalent or most easily ignored.

Our work makes the following main contributions:

e We present 11 code smells in Python programs and
respective metrics and criteria for detection, including 5
generic ones and 6 additional ones.

We propose the metric-based strategy in smell detection
and implement a detection tool named Pysmell which
allows user configuration for Python programs. We
evaluate the performance of Pysmell in detecting five
Python systems. The results show that Pysmell can find
285 code smell instances with the average precision of
97.7% and the average recall of 100%.

We explore the prevalence of code smells and find out
that Long Method and Long Class are the most
prevalent ones in Python programs. We also observe the
changes of smell instances in different releases of each
Python system. The results show that the number of
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numbers_str — [!!24" : " 15" : "21 n : H27" : H35H : H4OH : "45" : "5()" : " 121 n : ||363H]
filtered_numbers = [int(num) ** 2 for num 1n numbers_str if (int(num) % 3 == 0 and len(num) >= 2 and "5" not in num
land str(int(num) ** 2) == str(int(num) ** 2)[::-1])]



Complex List Comprehension

numberS_StI' — [!!24" : " 15" : "21 n : H27H : H35H : H4OH : "45" : "5()" : " 121 n : H363H]
filtered_numbers = [int(num) ** 2 for num 1n numbers_str if (int(num) % 3 == 0 and len(num) >= 2 and "5" not in num
land str(int(num) ** 2) == str(int(num) ** 2)[::-1])]

Refactoring Strategy

numbers_str =["24", "15", "21", "27", "35", "40", "45", "50", "121", "363"]
. filtered_numbers = []
for num in numbers_ str:
num_int = int(num)
1f num_int % 3 == 0:
1f len(num) >= 2:
if "5" not in num:
square = num_1int ** 2
1 str(square) == str(square)[::-1]:
filtered_numbers.append(square)




Goal

We aim to investigate the diffusion of Code
Smells in Al-enabled Systems over time and the
activities performed by developers that can

induce Code Smell proliferation
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Sub-Research Questions

What is the frequency of
Code Smelis in Al-Enabled Systems? }‘

What is the density of ‘
Code Smells in Al-Enabled Systems? i

What is the survival of
Code Smells in Al-Enabled Systems?
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Research Process

We selected 200 Al-Enabled Systems
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How we identified the smell introduction
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How we identified the smell introduction

We calculated the number of smells for each

release for all the projects

Release 1 Release 2 Release 3 Release N



How we identified the smell introduction

We calculated the number of smells for each
release for all the projects

We marked the release Ri+1 as “Increase” if the
difference in terms of the number of smells
pbetween the release Ri+1 and Ri is greater than O




Research Process

We automatically analyzed the commit w
messages and labeled them into 4 categories




Labels commit messages

Evolutionary

Activity Bug Fixing Refactoring




Labels commit messages

We removed the commits labeled as “Other”

Evolutionary

Activity Bug Fixing Refactoring




Labels commit messages

We removed the commits labeled as “Other”

It a commit message referred to more than one
- operation, we labeled 1t with multiple labels
(e.g., Bug Fixing and Evolutionary Activity)
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On the frequency of Code Smells In
Al-Enabled Systems
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On the frequency of Code Smells

Code Smells related to Object-Orlented
programming languages (e.g., complex class) are
never detected
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Code Smells related to Object Orlented
programming languages (e.g., complex class) are
‘never detected ‘

The most two frequent smells are related to
syntactic contractions to reduce the lines of code
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Code Smells related to Objer"'

programming languages g

=~ 'smells are related to
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0%

Of the projects were affected at least once by a
Complex List Comprehension



On the density of Code Smells in
Al-Enabled Systems




On the density of Code Smells

Code Smell density for the project MindMeld

\ | We observed that the
“\ \/\\ | M/\/\V\ density of Code
| Smells does not
follow a specific
(A trend of increase/
I 11" ™ 1 ' decrease over time

| |

M N
UMt




On the density of Code Smells

Code Smell density for the project MindMeld

1 A1 YVe observea tnat ihe

The presence and removal appear to be
Influenced by external factors

s Y decrease over time
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On the survival of Code Smells in
Al-Enabled Systems
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Survival of Complex List Comprehension

In some cases, we found
that Code Smells
survived for a time

\ 1 s period of 6 years!
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On the survival of Code Smells

Survival of Complex List Comprehension

Ly

Complex List Comprehension is not only the most
frequent but also one of the longest-lived

ANl " W ——
rV g il

llllllllllllllllllllllll

g o 8 — g o 8 — g Q. 8 — g Q 8 — g Q. 8 s 5 £ 8 =

5 5 5 © &5 5 &5 © &5 B85 &85 & ©& 8 8 & & 8 8 & & 8 8 =8
NNNNNNNNNNNNNNNNNNNNNNNN



On the activities that led developers to
introduce Code Smells In
Al-Enabled Systems



0%

of Code Smells has been introduced due to
Evolutionary Activities




In most cases the introduction of code smells Is
due to merge operations

OT Lode Smelis nas peen introaucea aue 10
Evolutionary Activities



The practices used by Python developers to
build Al-Enabled Systems combined with the
best practices used to write Python code can
arise the proliferation of specific Code Smells



The practices used by
Python developers to
build Al-Enabled
Systems combined with
the best practices used
to write Python code can
arise the proliferation of
specific Code Smells

Developers should
adopt quality assurance
tools for monitoring
code quality attributes






We analyzed 10,600 releases
of 200 Al-Enabled Systems




We analyzed 10,600 releases
of 200 Al-Enabled Systems

Complex List Comprehension is the most
frequent and longest-lived smell



We analyzed 10,600 releases
of 200 Al-Enabled Systems
Complex List Comprehension is the most
frequent and longest-lived smell

The Code Smells trend seems to be project- '
dependent






Assess our results
increasing the number of projects
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