EEEEEEEEEEEEEEEEEEE
SSSSSSS

The Yin and Yang of Software Quality:
On the Relationship between
Design Patterns and Code Smells

Giammaria Giordano, Giulia Sellitto, Aurelio Sepe, Fabio Palomba, and Filomena Ferrucci

University of Salerno (ltaly)
Department of Computer Science

Software Engineering (SeSa) Lab

giagiordano@unisa.it

giammariagiordano.github.io/giammaria-giordano

@giammariagiordi

Reusability Mechanisms

Reusability Mechanisms

Reusability Mechanisms

RS

Il

Reusability Mechanisms

RS

II OS
¢

Reusability Mechanisms

Legacy System Wrapping

Third-Party Libraries

Service Oriented Systems

Program Generator

Reusability Mechanisms

Legacy System Wrapping Third-Party Libraries

Service Oriented Systems Program Generator

Design Patterns

Reusable solutions for common problems
that arise during the design and
development of software

Code Smells

A symptom of poor design that can lead
to Increased effort during maintenance
and evolution activities

State of the Art

Myth or Reality? Analyzing the Effect of D
Patterns on Software Maintainability

Péter Hegediis, Dénes Ban, Rudolf Ferenc, and Tibor Gyiméth

University of Szeged, Department of Software Engineering
Arpad tér 2. H-6720 Szeged, Hungary
{hpeter, zealot, ferenc, gyimothy}@inf .u-szeged.hu

Abstract. Although the belief of utilizing design patterns to create b
ter quality software is fairly widespread, there is relatively little resear
objectively indicating that their usage is indeed beneficial.

In this paper we try to reveal the connection between design patter
and software maintainability. We analyzed more than 300 revisions
JHotDraw, a Java GUI framework whose design relies heavily on so
well-known design patterns. We used our probabilistic quality model |
estimating the maintainability and we parsed the javadoc annotations
the source code for gathering the pattern instances.

We found that every introduced pattern instance caused an impro
ment in the different quality attributes. Moreover, the average desi
pattern line density showed a very high, 0.89 Pearson correlation wi
the estimated maintainability values. Although the amount of availal
empirical data is still very small, these first results suggest that the usa
of design patterns do improve code maintainability.

Keywords: Design patterns, Software maintainability, Empirical va
dation, OO design

1 Introduction

Since their introduction by Gamma et al. [7], there has been a growing i1
the use of design patterns. Object-Oriented (OO) design patterns repres
known solutions to common design problems in a given context. The
belief is that applying design patterns results in a better OO design,

they improve software quality as well [7,16].

However, there is a little empirical evidence that design patterns r
prove code quality. Moreover, some studies suggest that the use of design
not necessarily result in good design [13,20]. The problem of empirical v
is that it is very hard to assess the effect of design patterns to high lev¢
characteristics e.g.: maintainability, reusability, understandability, etc.
some approaches that manually evaluate the impact of certain design
on different quality attributes [11].

We also try to reveal the connection between design patterns and
quality but we focus on the maintainability of the source code. As m
crete maintainability models exist (e.g. [2,4,8]) we could choose a me

A Controlled Experiment Comparing the
Maintainability of Programs Designed wit
without Design Patterns—A Replication ir
Programming Environment

MAREK VOKAC
Simula Research Laboratory, N-1325, Lysaker, Norway

WALTER TICHY
Universitdt Karlsruhe, Postfach 6980, D-76128 Karlsruhe, Germany

DAG I. K. SJOBERG
Simula Research Laboratory, N-1325, Lysaker, Norway

ERIK ARISHOLM
Simula Research Laboratory, N-1325, Lysaker, Norway

MAGNE ALDRIN
Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway

Editor: Dieter Rombach

Abstract. Software “design patterns™ seek to package proven solutions to design pt
makes it possible to find, adapt and reuse them. To support the industrial use ol
research investigates when, and how, using patterns is beneficial, and whether so
difficult to use than others. This paper describes a replication of an earlier controlled
patterns in maintenance, with major extensions. Experimental realism was incr¢
programming environment instead of pen and paper, and paid professionals
consultancy companies as subjects.

Measurements of elapsed time and correctness were analyzed using regression moi
method that took into account the correlations present in the raw data. Together v
the subjects” work, this made possible a better qualitative understanding of the res

The results indicate quite strongly that some patterns are much easier to und
others. In particular, the Visitor pattern caused much confusion. Conversely, the pat
a certain extent, Decorator were grasped and used intuitively, even by subjects with
of patterns.

The implication is that design patterns are not universally good or bad, but must
matches the problem and the people. When approaching a program with documy
even basic training can improve both the speed and quality of maintenance activit

Keywords: Controlled experiment, design patterns, real programming environment

Do Design Patterns Impact Software Quality Positively?

Foutse Khomh* and Yann-Gaél Guéhéneuc
Ptidej Team, GEODES, DIRO, University of Montreal,
C.P. 6128 succursale Centre Ville Montréal, Quebec, H3C 3J7, Canada

E-mail: {foutsekh,guehene}@iro.umontreal.ca

Abstract

We study the impact of design patterns on qual-
ity attributes in the context of software maintenance
and evolution. We show that, contrary to popular be-
liefs, design patterns in practice impact negatively sev-
eral quality attributes, thus providing concrete evidence
against common lore. We then study design patterns
and object-oriented best practices by formulating a sec-
ond hypothesis on the impact of these principles on
quality. We show that results for some design patterns
cannot be explained and conclude on the need for fur-
ther studies. Thus, we bring further evidence that de-
sign patterns should be used with caution during devel-
opment because they may actually impede maintenance
and evolution.

1. Introduction

Many studies in the literature (including some by
these authors) have for premise that design patterns
[2] improve the quality of object-oriented software sys-
tems, because design patterns are supposed to improve
the quality of systems, for example [2, page xiii] or [10].

Yet, some studies, e.g., [11], suggest that the use of
design patterns do not always result in “good” designs.
For example, a tangled implementation of patterns im-
pacts negatively quality [8]. Also, patterns generally
ease future enhancement at the expense of simplicity.

There is little empirical evidence to support the
claims of improved reusability’, expandability and un-
derstandability as put forward in [2] when applying
design patterns.

Therefore, we carry an empirical study of the im-
pact of design patterns on the quality of systems as
perceived by software engineers in the context of main-
tenance and evolution. Our hypothesis verifies software

! Although reusability in [2] may refer to the reusability of the
solutions of the design patterns, we consider reusability as the
reusability of the piece of code in which a pattern is implemented.

engineering lore: design patterns impact softws
ity positively. Our objective is to provide evi(
confirm or refute the hypothesis. We perform t|
by asking respondents their evaluations of the
of design patterns on quality after their use.

We present detailed results for three desi
terns: Abstract Factory, Composite, Flywei
three quality attributes: reusability, underst
ity, and expandability. Results for other patte
quality attributes can be found in [5]. We she
contrary to popular beliefs, patterns in practic
always improve quality attributes, thus provi
idence against common lore. We attempt to
these results using object-oriented best practi
conclude on the need for further studies and t
terns should be used with caution because t}
actually impede maintenance and evolution.

Section 2 presents related work and their
tions. Section 3 states the hypothesis and q
of the study and presents our data collection ¢
cessing. Section 4 describes our quantification
and presents the results of our survey. Sectiol
tains a discussion of the results. Section 6 c¢
our research, discusses the threats to the validif
study and introduces future work.

2. Related Work

Since their introduction by Gamma et al. [2]
there has been a growing interest on the use ¢
patterns. We present here some lines of worl
impact of patterns on quality.

Lange and Nakamura demonstrated [6] tha
patterns can serve as guide in program explora
thus make the process of program understandi
efficient. However this study was limited to
quality attribute and to a little number of pat

Wydaeghe et al. [12] presented a study on
crete use of six design patterns. They discu
impact of these patterns on reusability, moi

An exploratory study of the impact of antipatterns
on class change- and fault-proneness

Foutse Khomh - Massimiliano Di Penta -
Yann-Gaél Guéhéneuc - Giuliano Antoniol

Published online: 6 August 2011
© Springer Science+Business Media, LLC 2011

Editor: Jim Whitehead

Abstract Antipatterns are poor design choices that are conjectured to make object-
oriented systems harder to maintain. We investigate the impact of antipatterns on
classes in object-oriented systems by studying the relation between the presence
of antipatterns and the change- and fault-proneness of the classes. We detect 13
antipatterns in 54 releases of ArgoUML, Eclipse, Mylyn, and Rhino, and analyse (1)
to what extent classes participating in antipatterns have higher odds to change or to
be subject to fault-fixing than other classes, (2) to what extent these odds (if higher)
are due to the sizes of the classes or to the presence of antipatterns, and (3) what
kinds of changes affect classes participating in antipatterns. We show that, in almost
all releases of the four systems, classes participating in antipatterns are more change-
and fault-prone than others. We also show that size alone cannot explain the higher
odds of classes with antipatterns to underwent a (fault-fixing) change than other

We thank Marc Eaddy for making his data on faults freely available. This work has been partly
funded by the NSERC Research Chairs in Software Change and Evolution and in Software
Patterns and Patterns of Software.

F. Khomh (X))

Department of Electrical and Computer Engineering,
Queen’s University, Kingston, ON, Canada

e-mail: foutse.khomh@queensu.ca

M. D. Penta
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: dipenta@unisannio.it

Y.-G. Guéhéneuc - G. Antoniol
SOCCER Lab. and Ptidej Team, Départment de Génie Informatique et Génie Logiciel,
Ecole Polytechnique de Montréal, Montréal, QC, Canada

Y.-G. Guéhéneuc
e-mail: yann-gael.gueheneuc@polymtl.ca

G. Antoniol
e-mail: antoniol@ieee.org

Most of previous work investigated on the relationship
between Design Patterns and Code Quality without taking
iInto account Code Smells!

State of the Art

@ CrossMark

The relationship between design patterns and code smells: An
exploratory study

Bartosz Walter®*, Tarek Alkhaeir”

* Faculty of Computing, Poznan University of Technology, Poznan, Poland
b Poznan Supercomputing and Networking Center, Poznafi, Poland

ARTICLE INFO ABSTRACT

Article history:

Received 29 April 2015
Revised 14 February 2016
Accepted 14 February 2016
Available online 3 March 2016

Context—Design patterns represent recommended generic solutions to various design problems, whereas
code smells are symptoms of design issues that could hinder further maintenance of a software system.
We can intuitively expect that both concepts are mutually exclusive, and the presence of patterns is
correlated with the absence of code smells. However, the existing experimental evidence supporting this
claim is still insufficient, and studies separately analyzing the impact of smells and patterns on code

Keywords: quality deliver diverse results.
?g;'egzn‘: :;::ms Objective—~The aim of the paper is threefold: (1) to determine if and how the presence of the design

patterns is linked to the presence of code smells, (2) to investigate if and how these relationships change
throughout evolution of code, and (3) to identify the relationships between individual patterns and code
smells.

Software evolution
Empirical study

Method—-We analyze nine design patterns and seven code smells in two medium-size, long-evolving,
open source Java systems. In particular, we explore how the presence of design patterns impacts the
presence of code smells, analyze if this link evolves over time, and extract association rules that describe
their individual relationships.

Results—Classes participating in design patterns appear to display code smells less frequently than other
classes. The observed effect is stronger for some patterns (e.g., Singleton, State-Strategy) and weaker for
others (e.g., Composite). The ratio between the relative number of smells in the classes participating in
patterns and the relative number of smells in other classes, is approximately stable or slightly decreasing
in time.

Conclusion—This observation could be used to anticipate the smell-proneness of individual classes, and
improve code smell detectors. Overall, our findings indicate that the presence of design patterns is linked
with a lower number of code smell instances. This could support programmers in a context-sensitive
analysis of smells in code.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Design patterns and code smells represent two different ap-
proaches to assuring source code quality. The first approach,
perfective, is focused on solutions which positively impact some
attributes of quality, and which have been empirically validated.
The other approach, preventive, concentrates on detecting and

* Corresponding author. Tel.: +48 616652980.
E-mail addresses: bartosz.walter@cs.put.poznan.pl (B. Walter), tarekkh@man,
poznan.pl (T. Alkhaeir).

http://dx.doi.org/10.1016/.infsof 2016.02.003
0950-5849/® 2016 Elsevier B.V. All rights reserved.

removing elements that could be harmful for a software sys-
tem, or make it insufficiently effective. Moreover, the preventive
methods also include mechanisms that can identify symptoms of
anomalies before their negative impact on quality grows and could
become destructive for the system.

Design patterns represent the perfective group as they describe
practically validated solutions to recurring design problems. They
can easily be adapted and applied several times without chang-
ing the core of the concept. Since their introduction to software
engineering by the Gang of Four in 1994 |15], they have been an
object of rising interest of programmers and researchers, and prac-
tically demonstrated their ability to be implemented in different
contexts. Intuitively, it is expected that the use of design patterns

State of the Art

rns and code smells: An @CM

1

' Two medium projects have been analyzed from an evolutionary standpoint

-

rns represent recommended generic solutions to various design problems, whereas
oms of design issues that could hinder further maintenance of a software system.
pect that both concepts are mutually exclusive, and the presence of patterns is
sence of code smells. However, the existing experimental evidence supporting this
nt, and studies separately analyzing the impact of smells and patterns on code
results.

" the paper is threefold: (1) to determine if and how the presence of the design
1e presence of code smells, (2) to investigate if and how these relationships change
of code, and (3) to identify the relationships between individual patterns and code

nine design patterns and seven code smells in two medium-size, long-evolving,
ems. In particular, we explore how the presence of design patterns impacts the
ls, analyze if this link evolves over time, and extract association rules that describe
nships.

ipating in design patterns appear to display code smells less frequently than other
effect is stronger for some patterns (e.g., Singleton, State-Strategy) and weaker for
). The ratio between the relative number of smells in the classes participating in
ve number of smells in other classes, is approximately stable or slightly decreasing

rvation could be used to anticipate the smell-proneness of individual classes, and
tectors. Overall, our findings indicate that the presence of design patterns is linked
of code smell instances. This could support programmers in a context-sensitive
ode.

© 2016 Elsevier B.V. All rights reserved.

removing elements that could be harmful for a software sys-

tem, or make it insufficiently effective. Moreover, the preventive
ap- methods also include mechanisms that can identify symptoms of
ch, anomalies before their negative impact on quality grows and could
me become destructive for the system.
ed. Design patterns represent the perfective group as they describe
ind practically validated solutions to recurring design problems. They
can easily be adapted and applied several times without chang-
ing the core of the concept. Since their introduction to software
engineering by the Gang of Four in 1994 [15], they have been an
object of rising interest of programmers and researchers, and prac-
tically demonstrated their ability to be implemented in different
contexts. Intuitively, it is expected that the use of design patterns

a0,

State of the Art

rns and code smells: An @C\,k

rns represent recommended generic solutions to various design problems, whereas
oms of design issues that could hinder further maintenance of a software system.
pect that both concepts are mutually exclusive, and the presence of patterns is
sence of code smells. However, the existing experimental evidence supporting this
nt, and studies separately analyzing the impact of smells and patterns on code
results.

" the paper is threefold: (1) to determine if and how the presence of the design
1e presence of code smells, (2) to investigate if and how these relationships change
of code, and (3) to identify the relationships between individual patterns and code

nine design patterns and seven code smells in two medium-size, long-evolving,
ems. In particular, we explore how the presence of design patterns impacts the
ls, analyze if this link evolves over time, and extract association rules that describe
nships.

ipating in design patterns appear to display code smells less frequently than other
effect is stronger for some patterns (e.g., Singleton, State-Strategy) and weaker for
). The ratio between the relative number of smells in the classes participating in
ve number of smells in other classes, is approximately stable or slightly decreasing

rvation could be used to anticipate the smell-proneness of individual classes, and
tectors. Overall, our findings indicate that the presence of design patterns is linked
of code smell instances. This could support programmers in a context-sensitive
ode.

© 2016 Elsevier B.V. All rights reserved.

removing elements that could be harmful for a software sys-

tem, or make it insufficiently effective. Moreover, the preventive
ap- methods also include mechanisms that can identify symptoms of
ch, anomalies before their negative impact on quality grows and could
me become destructive for the system.
ed. Design patterns represent the perfective group as they describe
ind practically validated solutions to recurring design problems. They
can easily be adapted and applied several times without chang-
ing the core of the concept. Since their introduction to software
engineering by the Gang of Four in 1994 [15], they have been an
object of rising interest of programmers and researchers, and prac-
tically demonstrated their ability to be implemented in different
contexts. Intuitively, it is expected that the use of design patterns

a0,

1

' Two medium projects have been analyzed from an evolutionary standpoint

-

|
- The authors consider 7 kinds of code smells principally related to Coupling

-

State of the Art

rns and code smells: An @C\,k

rns represent recommended generic solutions to various design problems, whereas
oms of design issues that could hinder further maintenance of a software system.
pect that both concepts are mutually exclusive, and the presence of patterns is
sence of code smells. However, the existing experimental evidence supporting this
nt, and studies separately analyzing the impact of smells and patterns on code
results.

" the paper is threefold: (1) to determine if and how the presence of the design
1e presence of code smells, (2) to investigate if and how these relationships change
of code, and (3) to identify the relationships between individual patterns and code

nine design patterns and seven code smells in two medium-size, long-evolving,
ems. In particular, we explore how the presence of design patterns impacts the
ls, analyze if this link evolves over time, and extract association rules that describe
nships.

ipating in design patterns appear to display code smells less frequently than other
effect is stronger for some patterns (e.g., Singleton, State-Strategy) and weaker for
). The ratio between the relative number of smells in the classes participating in
ve number of smells in other classes, is approximately stable or slightly decreasing

rvation could be used to anticipate the smell-proneness of individual classes, and
tectors. Overall, our findings indicate that the presence of design patterns is linked
of code smell instances. This could support programmers in a context-sensitive
ode.

© 2016 Elsevier B.V. All rights reserved.

removing elements that could be harmful for a software sys-

tem, or make it insufficiently effective. Moreover, the preventive
ap- methods also include mechanisms that can identify symptoms of
ch, anomalies before their negative impact on quality grows and could
me become destructive for the system.
ed. Design patterns represent the perfective group as they describe
ind practically validated solutions to recurring design problems. They
can easily be adapted and applied several times without chang-
ing the core of the concept. Since their introduction to software
engineering by the Gang of Four in 1994 [15], they have been an
object of rising interest of programmers and researchers, and prac-
tically demonstrated their ability to be implemented in different
contexts. Intuitively, it is expected that the use of design patterns

a0,

1

' Two medium projects have been analyzed from an evolutionary standpoint

-

|
- The authors consider 7 kinds of code smells principally related to Coupling

-

‘The ratio between the relative number of Smells in classes participating in Design Patterns

and the relative number of Smells in other classes is approximately the same

Limitations

The paper considers only two
medium size projects

The paper considers only two
medium size projects

N etii on the J a
Design Patterns and Code Smells that |
impact Understandability and Code

Why is it important?

Design Patterns are commonly used facilitate the
Maintenance of source code

For this reason, It Is essential to understand the possibile
relationship with specific Code Smells that can impact
the Understandability and Code Comprehension

Goal

Investigating whether and how Design
Patterns instances are related to the
emergence of Code Smells instances that
Impact Understandability and
Code Comprehension

How do we assessed our goal?

We conducted a large empirical investigation by

considering over 540 releases of 15 projects, on
the relationship between

Design Patterns and Code Smells

Research Questions

Research Questions

— =

| - 1,

| What are the co-occurrences in terms of classes 1
between Design Patterns and Code Smells? |

|

Research Questions

|
\

What are the co-occurrences in terms of classes
between Design Patterns and Code Smells?

|

]

|

__A e —————— e P — e — ——— — _—
E— — — — e — e o = —— — — — o — - — — — —— — S — . R .

i

To what extent does the presence of Design |
| Patterns affect Code Smells?

Research Process

Co-occurrence Answer
DP and CS RQ1

{8

<[>

GitHub Source RepoDiriller Releases
Code

==
Data
Integration

D.P.
Detector

Statistical
Model

Research Process

Research Process

We mined 15 popular Java projects

We selected projects with at least one Design Pattern and
based on the popularity in terms of number of stars

Research Process

Research Process

Research Process

We set up Decor to extract Smells that impact
Understandability and Code Comprehension i.e.,
Complex Class, God Class, and Spaghetti Code

Research Process

We considered all the Design Patterns detectable with the
tool of Tsantalis et al.

We considered all the Design Patterns detectable with the
tool of Tsantalis et al.

Due to the constraints of the tool, we selected only projects
buildable without errors

List of Design Patterns

m— e — — " —

State/Strategy

— —

Adapter/Command

e e — — —— > —

% Singleton % Factory Method

Template Method

List of Design Patterns

Adapter/Command State/Strategy

Observer

Research Process

Research Process

Co-occurrence Answer
DP and CS RQ1

{8
==
Data
Integration

<[>

GitHub Source RepoDiriller Releases
Code

D.P.
Detector

We calculate the frequency of classes that participate to

Design Patterns and simultaneity are affected
by Code Smells

We calculate the frequency of classes that participate to

Design Patterns and simultaneity are affected
by Code Smells

We normalize the data using MIN-MAX and then
plot the results

Research Process

Co-occurrence Answer
DP and CS RQ1

{8

<[>

GitHub Source RepoDiriller Releases
Code

==
Data
Integration

D.P.
Detector

Statistical
Model

Research Process

Variables of our model

Independent
Variable

Variables of our model

Dependent
Variable

Variables of our model

l"

Control
Variable

Variables of our model

A positive coefficient indicates a positive correlation
petween the independent variables and the
dependent variable
A negative coefficient indicates a negative correlation

pbetween the iIndependent variables and the
dependent variable

Co-occurrences of Design Patterns and Code Smells

%
6%

projects contain no instances of classes that participate
IN Design Patterns and simultaneously
are affected by Code Smells

46% | 54%

projects contain projects contain instances
no instances of classes that of classes that participate Iin
participate in Design Patterns Design Patterns
and simultaneously and simultaneously

are aftected by Code Smells J gre affected by Code Smells

Co-occurrence of Design Patterns and Code Smells

In all projects where exists a w
co-occurrence between Design Patterns
and Code Smells, the classes implementing
State/Strategy are affected by God Class

In 8 projects the Design Pattern W
State/Strategy was also affected by
Spaghetti Code, while in other 4 projects
Complex Class was identified

Co-occurrence of Design Patterns and Code Smells

In all prOJeCts where exists a
~Co-occurrence between Design Patterns

In 8 projects the Design Pattern
State/Strategy was also affected by
Spaghetti Code, while in other 4 projects

L ‘Complex Class was identified

On the presence of Design Patterns and
how they affect Code Smells

%
0%

of projects are characterized by a statistical
correlation between Design Patterns and
Code Smells

On the presence of Design Patterns and how they affect Code Smells

On Design Patterns and how they affect Code Smells

| God Class |

-

I

~ Bridge |

_

Component |

+ + + +
+ + + +
+ + + +

~ Singleton 1

_ Factory

_Template |

- — + Low Positive Statistical Correlation
| %Obseer 1 ++ Medium Positive Statistical Correlation
+++ Strong Positive Statistical Correlation

| - Low Negative Statistical Correlation
- - Medium Negative Statistical Correlation

- - - Strong Negative Statistical Correlation

_

Decorator |

—

On Design Patterns and how they affect Code Smells

| God Class |

-

I

+ + +
+ + +
+ + +

Bridge

S - el

Component |

+ + + +
+ + + +
+ + + +

~ Singleton 1

_ Factory

_Template |

+ Low Positive Statistical Correlation
++ Medium Positive Statistical Correlation
+++ Strong Positive Statistical Correlation

o Obseer]

| - Low Negative Statistical Correlation
- - Medium Negative Statistical Correlation

- - - Strong Negative Statistical Correlation

_

Decorator |

—

On Design Patterns and how they affect Code Smells

_ GodClass | | Spaghetti

Bridge

S e

Component |

+ + + +
+ + + +
+ + + +

o Singleton B

_Template |

+ + +
+ + +
+ + +

- — + Low Positive Statistical Correlation
| %Obseer 1 ++ Medium Positive Statistical Correlation
+++ Strong Positive Statistical Correlation

| - Low Negative Statistical Correlation
- - Medium Negative Statistical Correlation

- - - Strong Negative Statistical Correlation

_

Decorator |

—

Although the findings of the RQ1 show the co-occurrences
between several Design Patterns and the Complex Class,
the results indicate that there iIs no correlation

The presence of Design Patterns does not
necessarily guarantee a high quality, as they
might be correlated with Code Smells

An abuse or misuse of Design Patterns can
lead to an increase the Code Complexity
and a decrease of Code Comprehension

An abuse or misuse
of Design Patterns
can lead to an
iIncrease the Code
Complexity and a
decrease of Code
Comprehension

The introduction of
Design Patterns
should be carefully
planned at design
time, to resolve
specific problems, to
avoid making
sub-optimal choices

We analyzed over 540 releases of
15 Java projects

We analyzed over 540 releases of

15 Java projects

Classes participating in Design Patterns are |
often affected by Code Smells themselves

— p— ——— e — =

Summing up

e _ e —————

We analyzed over 540 releases of
15 Java projects

Classes participating in Design Patterns are
often affected by Code Smells themselves |

|

Oum batterns ahaly,ﬁh
' a positive correlation with the presence of at
least one Code

—

__ —

Understand the developers’ perspective on
the impact of Design Pattern on Code Smells

Understand the developers’ perspective on
the impact of Design Pattern on Code Smells

Understand how developers implemented DeS|gn
Patterns to evaluate the correctness

Goal

investigating whether and how design
patterns are related to the emergence of
Issues compromising code understandability

46% | 54%

are no instances of classes are instances of classes
that participate Iin that participate in
design patterns design patterns
and simultaneously and simultaneously
are affected by code smells are affected by code smells

0%...

We found that the implementation of

design patterns determined the presence of
code smells in a statistically significant way

SCAN ME!
I’'m the paper

