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ABSTRACT
Context. The adoption of Machine Learning (ML)–enabled sys-
tems is steadily increasing. Nevertheless, there is a shortage of
ML-specific quality assurance approaches, possibly because of the
limited knowledge of how quality-related concerns emerge and
evolve in ML-enabled systems. Objective.We aim to investigate
the emergence and evolution of specific types of quality-related
concerns known as ML-specific code smells, i.e., sub-optimal imple-
mentation solutions applied on ML pipelines that may significantly
decrease both quality and maintainability of ML-enabled systems.
More specifically, we present a plan to studyML-specific code smells
by empirically analyzing (i) their prevalence in real ML-enabled
systems, (ii) how they are introduced and removed, and (iii) their
survivability. Method. We will conduct an exploratory study, min-
ing a large dataset of ML-enabled systems and analyzing over 400k
commits about 337 projects. We will track and inspect the introduc-
tion and evolution of ML smells through CodeSmile, a novel ML
smell detector that we will build to enable our investigation and to
detect ML-specific code smells.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Technical Debt; ML-Specific Code Smells; Software Quality Assur-
ance; Software Engineering for Artificial Intelligence.
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1 INTRODUCTION
Machine Learning (ML) evolved through the emergence of com-
plex software integrating ML modules, defined as ML-enabled sys-
tems [13]. Self-driving cars, voice assistance instruments, or con-
versational agents like ChatGPT1 are just some examples of the
successful integration of ML within software engineering projects.

However, the strict time-to-market and change requests pres-
sure practitioners to roll out immature software to keep pace with
competitors, leading to the possible emergence of technical debt [7]
i.e., a technical trade-off that can give benefits in a short period,
but that can compromise the software health in the long run. Code
smells is a manifestation of technical debt. They are symptoms of
poor design and implementation choices that, if left unaddressed,
can deteriorate the overall quality of the system [8].

Sculley et al. [19] showed that ML-enabled systems are incredibly
prone to technical debt and code smells, raising the need for a qual-
ity assurance process for ML components. Cardozo et al. [3] and
Van Oort et al. [24] argued that while the issues in those systems
are emerging, there is a lack of quality assurance tools and prac-
tices that ML developers can use. This lack of quality management
assets stimulates the proliferation of code smells in ML-enabled
systems [12]. Consequently, given the complex nature of those
systems, new types of code smells have emerged. Considering the
aspects that ML developers face when dealing with ML pipelines,
Zhang et al. [29] defined a new form of code smells, AI-specific code
smells (ML-CSs). Similarly to traditional code smells, an ML-CS is
defined as a sub-optimal implementation solution for ML pipelines
that may significantly decrease the quality of ML-enabled systems.
A key example of those quality issues is using a loop operation
instead of exploiting the corresponding Pandas function for data
handling, leading to Unnecessary Iteration smell [29].

While some work underlines the need to explore AIML-CSs [6,
29], there is still a lack of knowledge on this type of quality issues.
Among the various possible causes, we outline a lack of knowledge
on how ML-CSs emerge and evolve and what motivations lead
developers to introduce and remove them. This poor knowledge
significantly threatens the release of ML-CSs detectors aimed at im-
proving the system’s quality. Researchers and practitioners cannot
define crucial aspects of smell detection and refactoring, such as (i)
the conditions where ML-CSs are more prone to be introduced and

1https://chat.openai.com/
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removed, (ii) in which stage of the development lifecycle practition-
ers should pay attention e.g., when they introduce new features or
when they fix defects, (iii) what are the practices that developers
use to remove code smells, (iv) in which stage a quality assurance
monitoring tool should focus on tracking the evolution of ML-CSs
e.g., data preparation or model training.

In this registered report, we aim to bridge this knowledge gap by
describing our plan to understand the evolution of ML-CSs in ML-
enabled systems. Specifically, we will perform a large-scale mixed
confirmatory and exploratory study considering 337 projects coming
from the NICHE dataset [27] and will mine over 400k commits to
analyze (i) the prevalence of ML-CSs in ML-enabled systems, (ii)
when and why ML-CSs are introduced and removed, and (iii) how
ML-CSs survive over time. All the collected data, analysis scripts,
and additional material will be publicly available online.

On the one hand, we believe that an improved understanding of
these evolutionary aspects may provide researchers and tool vendors
with insights that might be useful to characterize the peculiarities of
ML-CSs and the way practitioners currently deal with them, possi-
bly leading to the definition of novel quality assurance mechanisms
that better fit the typical lifecycle of ML-CSs, thus better-assisting
developers daily. On the other hand, practitioners with findings
that may be used to improve the quality of ML-enabled systems
by removing ML-CSs through the mechanisms employed by other
practitioners and that will be described as part of our work.

2 BACKGROUND AND RELATEDWORK
This section provides an overview of ML-CSs and summarizes the
state-of-the-art concerning how code smells have been investigated
in traditional and ML-enabled systems.
1 for step , inputs in enumerate(tqdm(eval_dataloader ,

desc="Iteration", disable=args.local_rank not in

[-1, 0])):

2 for k, v in inputs.items():

3 optimizer.zero_grad()

4 inputs[k] = v.to(args.device)

5 outputs = model (**inputs , head_mask=head_mask)

6 loss , logits , all_attentions = (

7 outputs [0],

8 outputs [1],

9 outputs[-1],

10 )

11 loss.backward () # Back propagate to populate the

gradients in the head mask

Listing 1: Example of Gradients Not Cleared before Backward
Propagation in the Transformer project.

2.1 Background
Zhang et al. [29] recently released a catalog of 22 ML-CSs by em-
pirically analyzing white and grey literature. In our appendix, in-
formation on the list of ML-CSs identified by the authors, their
description, the pipeline stage they affect, and the quality aspects
they impact are presented [16].

To provide a tangible example of ML-CS, let consider Gradi-
ents Not Cleared before Backward Propagation. It refers to when a
developer builds a neural network in a loop operation and does
not use the function optimizer.zero_grad() to clear the old
gradients at the end of each iteration. Without this operation,

the gradients will gather from all the preceding backward calls.
This situation can lead to a gradient explosion, causing a failure
in the training process [26]. To mitigate this smell, the function
optimizer.zero_grad() should be used before the backpropaga-
tion step. Listing 1 shows an example of Gradients Not Cleared
before Backward Propagation smell for the project Transformers.2
We added an extra line (in green) to indicate how to refactor the
smell as denoted in the taxonomy of Zhang et al. [29].

2.2 Related Work
Several studies have been carried out in the context of code smells
in traditional systems [11, 14, 15, 21] also investigating their impact
during the software evolution [10, 25]. Tufano et al. [23] conducted
a large empirical study on when and why code smells are intro-
duced in traditional systems, their survivability, and how developers
remove them. They discovered that code smells are mainly intro-
duced when files are created, and only a negligible percentage of
them are removed through refactoring operations. Their impactful
contribution allowed for improving the management of traditional
code smells through the implementation of automatic detection
and refactoring tools. Our work, inspired by the contribution of
Tufano et al., aims to explore the nature of ML-CSs and to improve
the quality assurance process for ML-enabled systems.

In the remaining part of this section, we focus on state-of-the-
art traditional code smells in ML-enabled systems because, to our
knowledge, no studies explicitly focus on ML-CSs in the context
of ML-enabled systems. Tang et al. [22] conducted an empirical
study analyzing 26 machine learning (ML) projects. They identified
several code anti-patterns ML-Specific, highlighting the high preva-
lence of Duplicated Code. Their findings shed light on unique chal-
lenges and debt types specific to ML projects, helping researchers
and practitioners understand the nature of technical debt in ML
projects. Van Oort et al. [24] conducted an empirical study on code
smells by analyzing 74 open-source machine learning projects us-
ing PyLint. Also, in this case, they found that Duplicated Code is the
most frequent smell. Furthermore, they noticed that the emergence
of code smells is more frequent in machine-learning systems than
in traditional ones. Inspired by the work of Van Oort et al. [24],
Giordano et al. [9] performed a large study on the diffusion of code
smells over time in ML-enabled systems, focused on the activities
that lead developers to introduce code smells and the survival time.
The findings suggested that the smell variation does not follow a
specific pattern over time; their introductions are principally due
to evolutionary activities, and code smells can survive even for
several years. These previous findings were confirmed by Cardozo
et al. [3], who, in 2023, investigated the presence of code smells by
considering 29 reinforcement learning (RL) projects. Still, in this
case, the results seem to go in the same direction, pointing out
that the emergence of traditional code smells is more frequent in
reinforcement learning projects than in traditional ones.

Compared to previous work, our study will not focus on tradi-
tional code smells but on ML-specific code smells. Our results could

2https://github.com/huggingface/transformers/blob/main/examples/research_
projects/bertology/run_bertology.py

2
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shed light on their prevalence, introduction, removal, and surviv-
ability for eliciting ways to prevent developers from introducing
such smells and help remove them when already present.

3 RESEARCH METHOD
The following section presents the design of the study, highlighting
the main goal and the relative research questions.Wewill follow the
guidelines by Wohlin et al. [28] and the ACM/SIGSOFT Empirical
Standards3; in particular, we will use the “General Standard”, “Data
Science”, and “Repository Mining” guidelines.

3.1 Goal and Research Questions
The study aims to explore to what extent ML-CSs are prevalent
in ML-enabled systems, when and how they are introduced and
removed, and for how long they survive. To address our goal, we
formulated the specific goal through the GQM approach [1].

◎ Our Goal.
Purpose: Explore
Issue: (i) the prevalence, (ii) the introduction, (iii) the removal,
and (iv) the survival
Object: of ML-specific code smells in ML-enabled systems
Viewpoint: from the points of view of ML developers.

Figure 1 depicts the processwewill follow to address our research
goal by addressing a preliminary and three main research questions.

ü RQ0. How are ML-specific code smells prevalent in ML-enabled
systems?

The reason behind this preliminary investigation is twofold. On
the one hand, we may assess the relevance of the problem: should
we identify a poor prevalence of ML-CSs, this may indicate that the
problem is not as relevant as in traditional systems [2, 14], possibly
not motivating further research on the matter. On the other hand,
we may identify the most common ML-specific code smells and in
which stage of an ML pipeline they manifest themselves.

ü RQ1. When are ML-specific code smells introduced in ML-
enabled systems?

This research question allows the classification of the conditions
and contexts that lead developers introduce ML-CSs, other than the
understanding if ML-CSs are injected, e.g., when the ML projects
are created or during the evolution of the system. The results to
RQ1 would inform when ML-CSs should be mitigated.

ü RQ2.What tasks were performed when the ML-CSs were intro-
duced?

After understanding whenML-CSs are injected, it is necessary to
extract information about the reasons that led developers to update
the system by introducing an ML-CS. So, RQ2 aims to extract the
actions performed by developer which likely introduce ML-CSs.

ü RQ3.When and how ML-specific code smells are removed in
ML-enabled systems?

3Available at https://github.com/acmsigsoft/EmpiricalStandards

Table 1: Descriptive statistics of the NICHE projects.

Stars Commits LOC
Min 100 100 10
1st Q. 211 219 3,829
Median 529 420 9,235
Mean 1,978 1,307 24,414
3rd Q. 1,641 1,070 21,845
Max 76,838 90,927 699,513

RQ3 focuses on the timing andmethods employed to removeML-
CS. This research question is motivated by the need to understand
the strategies and circumstances under which developers address
ML-CSs. By identifying the set of strategies that developers use
to remove ML-CSs, we aim to extract insights to define automatic
refactoring strategies for ML-CSs that developers would be inclined
to integrate into the development processes.

ü RQ4. How long do ML-specific code smells survive in the code?

Finally, RQ4 aims to observe the survival time of each ML-CS to
identify the ones that persist in the project over time. The outcome
of the analysis can be utilized to focus on detecting the ML-CSs
that exhibit greater endurance during software maintenance.

3.2 Dataset Description and Projects Selection
We will rely on the NICHE dataset [27] for our investigations. This
dataset contains 572 ML-enabled systems and was released at MSR
’23. We selected it for two reasons. On the one hand, it contains
only popular, active ML projects with extensive commit histories
i.e., projects with over 100 stars on GitHub, with commits more
recent than May 1𝑠𝑡 , 2020, and with at least 100 commits, allowing
us not to select personal or inactive projects. On the other hand, it
contains heterogeneous projects with different characteristics.

To verify the feasibility of the analysis on the selected dataset, we
preliminary mined it. This operation was necessary because it is rea-
sonable to suppose that some projects could be no longer available
for some reason (e.g., repositories are archived, some communities
migrated to other version control systems, or some repositories
have restricted access). At the end of this step, we identified 566
projects available out of the 572 and 1,110,689 commits. Table 1
shows the descriptive statistics on the variables “Stars”, “Commits”,
and “Lines of Code” provided in NICHE [27]. As we can notice from
the metrics extracted, the project distribution in the NICHE dataset
presents a median of about 529 stars, 420 commits, and 9,235 lines of
code, suggesting that the projects have a high development activity.

Observing the statistics of the projects, we noticed a high vari-
ability between projects in terms of lines of code (LOC). According
to Zhou et al. [30], the project size is an impactful confounding vari-
able when analyzing code-related aspects. Therefore, we analyzed
the active projects in the dataset through a percentile distribution
analysis and divided them into three groups:

Small: Projects with a number of lines of code below the 30𝑡ℎ
percentile. This set consists of 167 projects, all containing less
than 4,765 lines of code.

3
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Figure 1: The process designed for the study.

Table 2: Descriptive statistics of the active projects divided by size.

Stars Commits LOC

Small

Min 100 100 1,648
1st Q. 171 148 2,301
Median 367 244 2,921
Mean 1,170 552 3,115
3rd Q. 879 436 3,871
Max 13,265 13,542 4,763

Medium

Min 100 105 4,783
1st Q. 159 241 6,268
Median 290 375 7,817
Mean 1,138 610 8,039
3rd Q. 907 722 9,344
Max 18,087 3,299 11,835

Large

Min 105 103 12,005
1st Q. 336 405 17,656
Median 901 855 27,352
Mean 3,052 2,271 54,342
3rd Q. 2,652 1,514 46,488
Max 33,741 47,094 661,808

Medium: Projects with a number of lines of code above the 30𝑡ℎ
percentile and below the 60𝑡ℎ percentile. This set consists of 169
projects, all containing less than 11,836 lines of code.

Large: Projects with a number of lines of code above the 60𝑡ℎ
percentile. This set consists of 224 projects, all containing more
than 11,836 lines of code.

Due to the potential computational issues arising from the large
number of projects and commits, we will apply a statistically sig-
nificant sampling for each group. Specifically, we will select the
projects considering for each population, a sample with 95% confi-
dence level and 5% margin of error. As a result, we will consider
117 projects, composed of 64,607 commits, for Small projects, 118
projects, composed of 71,380 commits, for Medium projects, and
142 projects, composed of 265,671 commits, for the Large projects
i.e., we want to analyze 337 projects and 401,658 commits. Table 2
shows the descriptive statistics for each size group.

In addition to analyzing projects based on their size in terms of
LOC, we will also consider the most related characteristics that led
the authors to define a project as ML-engineered. One such charac-
teristic is the adoption of Continuous Integration (CI). The presence
of a CI pipeline may directly affect the quality assurance mecha-
nisms implemented by the projects, possibly affecting the presence
of ML-CSs. This distinction between projects with and without CI
allows us to explore potential differences in the prevalence and
management of ML-CSs between the two groups. Therefore, to
incorporate this aspect into our analysis, we thoroughly examined
the dataset and found that 319 projects utilize CI tools, whereas 247
projects do not incorporate CI into their development environment.

3.3 Data Extraction
After cloning the projects, we will gather fine-grained structural
metrics using PyDriller, a framework helpful to analyze Git reposito-
ries [20].Wewill extract the commit history of a project P belonging
to the selected projects. For each commit, C𝑖 ∈ P, we will collect
the total number of files, the number of removed and added files,
the commit date, and the commit message.

3.4 ML-Specific Code Smell Detection
To achieve the study’s objectives, we will develop an ML-CS detec-
tion tool, CodeSmile. This tool will analyze the Abstract Syntax
Tree (AST) of code to gather information about statements and
methods. Notably, despite the clarity and specificity of ML-CS defi-
nitions provided by Zhang et al. [29], there is a lack of automated
solutions for detecting these code smells. CodeSmile aims to fill
this gap and provide an automatic solution to detect a set of 14 ML-
CS; for the sake of space limitations, the definitions of the targeted
ML-CS are reported as part of our online appendix [16]. The tool
will use the rule-based conditions defined by Zhang et al. [29] to
identify ML-CSs effectively, and we will manually validate it by
selecting a statistically significant sampling of smells. The feasi-
bility of static analysis to detect these smells is discussed in the
technical report available in our online appendix [16]. The tool
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will use the rule-based conditions defined by Zhang et al. [29] to
identify ML-CSs effectively, and we will manually validate it by
selecting a statistically significant sampling of smells.

The validation set will be defined as follows. Starting from the
whole set of files included in the software projects considered in the
study, we will first identify the files containing ML modules - in this
way, we will filter out those files that, by definition, cannot contain
any ML-CS. This first step will be performed by statically analyzing
the content of each file: if it contains a reference to libraries such as
Pandas,4 TensorFlow,5 Theano,6 or PyTorch,7 then the file will be
marked as ML-related. The choice of the libraries to verify is mainly
based on previous work [27]: the authors of the NICHE dataset
have indeed defined ML projects as those relying on TensorFlow,
Theano, or PyTorch. We also consider Pandas because several of
the code smells targeted by our study refer to the suboptimal use
of this library. We will then pick a statistically significant sample
(confidence level = 95%, margin of error = 5%), which will finally
form our validation set.

Upon completing the step above, wewill then recruit external ML
engineers, asking them to inspect the files in the validation sample
(or a part thereof, in case the number of files to validate would be
excessively large) and annotate the ML-CS instances they contain.
In particular, for each ML engineer, we will prepare a validation
package containing (1) the set of files to analyze, (2) a readme file
reporting definitions and examples of the specific code smells we
are interested in, and (3) a spreadsheet containing a number of rows
equals to the files to validate and a number of columns equals to the
smells to evaluate. Given this validation package, the ML engineers
will be asked to fill each entry of the spreadsheet with a “Yes” if the
i-th file is affected by the j-th code smell, with a “No” otherwise. We
will give ML engineers up to 21 days to send us back the annotated
spreadsheet. The number of ML engineers involved will depend on
the validation sample size. We will start recruiting ML engineers
from our contact network. Whenever needed, we will attempt to
involve further practitioners through public calls on social media,
practitioner’s blogs, and specialized ML platforms. Among all the
candidates, we will retain only those having at least three years of
experience in the development of ML systems.

Once we receive the annotated spreadsheets, we will analyze
them as follows. On the one hand, we will compute Cohen’s k inter-
rater agreement to measure the level of agreement among the ML
engineers that assessed the smelliness of the same files - this will
be useful to understand the extent to which ML code smells are
perceived as such. On the other hand, we will define a ground truth
by means of majority voting: for each file of the validation set, we
will finally consider it as affected by a given smell if the majority
of the ML engineers marked it as smelly. Such a ground truth will
finally be used to assess the capabilities of CodeSmile in terms of
precision and recall, hence assessing the amount of false positive
and negative output by the tool.

As a result of the detection, the tool will report all the identified
ML-CS with the relative position. CodeSmile will successively
analyze each commit of ML projects to report all the information

4https://pandas.pydata.org/
5https://www.tensorflow.org/?hl=it
6https://pypi.org/project/Theano/
7https://pytorch.org/

helpful in analyzing introduction, survival time, and removal of
ML-CSs. To conduct our analyses, we will combine this data with
those previously extracted using PyDriller [20].

3.5 Commit Data Extraction
After identifying the method for detecting ML-CS, we will extract
the commit data for each project to address our research questions.
First, we will identify the smell-introducing and smell-removing
commits for each identified AI-CS instance. Specifically, we will
track each smell 𝑠𝑖 identified in a commit 𝑐𝑖 , using its file name
and line number. We will analyze the project’s history from the
first commit, comparing 𝑐𝑖 and 𝑐𝑖 + 1 pairwise. For each pair of
consecutive commits, we will consider the two following cases:

(1) If 𝑐𝑖 + 1 contains a smell 𝑠𝑖 not contained in 𝑐𝑖 , then 𝑐𝑖 + 1
is the smell-introducing commit for 𝑠𝑖 .

(2) If 𝑐𝑖 contains a smell 𝑠𝑖 not contained in 𝑐𝑖 + 1, then 𝑐𝑖 + 1
is the smell-removing commit for 𝑠𝑖 .

After collecting smell-introducing and smell-removing commits,
we will analyze the commit messages to understand the rationale
behind introducing and removing ML-CSs.

3.6 Data Analysis
The following section explains howwewant to analyze the collected
data to respond to our research questions.

RQ0: How are ML-specific code smells prevalent in ML-enabled
systems? CodeSmile will analyze last snapshot of the selected
ML-enabled systems to observe the prevalence distribution of each
ML-CS. Statistical descriptions and plots will be employed to under-
stand the characteristics of each distribution. Then, insights on the
most prevalent ML-CS across several projects will be provided. Such
results will be further enriched by mapping each identified ML-CS
to the related ML-pipeline stage, utilizing the mapping framework
established by Zhang et al. [29]. This additional mapping step will
enhance our understanding of ML-CSs, revealing the most prone
areas within the ML development pipeline. Each analysis will be
conducted considering the effect that related factors could have.
Through the different size groups and the adoption of continuous
integration defined in Section 3.2, we will apply statistical tests
to understand whether these are possible factors influencing the
prevalence of ML-CS in ML-enabled systems. At first, we hypothe-
size that different types of ML code smells may differ in terms of
prevalence. Hence, we formulated the following null hypothesis:
H0: There is no statistically significant difference between the preva-
lence of the smells i and j.
with i and j belonging to the set of ML smells S considered in

the study. Secondly, we hypothesized that the prevalence of ML
code smells may depend on the size of the ML projects. Larger
projects may indeed be more complex and involve more contribu-
tors, increasing the likelihood of introducing code smells during
development. As such, we formulated the following null hypothesis:

H1: There is no statistically significant difference in the prevalence
of the smell i among large, medium, and small projects
with i belonging to the set of ML smells S considered in the

study, large projects being those having a size (in terms of lines of
5
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code) above the 60𝑡ℎ percentile of the distribution of the sizes of
all projects, medium projects being those having a size between
the 30𝑡ℎ and 60𝑡ℎ percentile of the distribution of the sizes of all
projects, and small projects being those having a size lower than
the 30𝑡ℎ percentile of the distribution of the sizes of all projects.

We hypothesized that projects relying on a Continuous Integra-
tion (CI) pipeline may have a lower prevalence of code smells than
those not relying on that. Indeed, the presence of a CI pipeline may
have a direct effect on the quality assurance mechanisms imple-
mented by the projects, possibly affecting the presence of ML code
smells. Hence, we formulated our last null hypothesis:
H2: There is no statistically significant difference in the prevalence
of the smell i between projects relying and not on a Continuous
Integration pipeline.

with i belonging to the set of ML smells S considered in the study.
For each null hypothesis, we also defined an alternative hypoth-

esis. Regarding statistical verification, we plan to use different tests
for the three hypotheses we formulated. For H0 and H2, we will use
the non-parametric Wilcoxon test [5], which investigates signifi-
cant differences between two populations. Then, for the analysis
for H1 and given the goal of exploring differences between three
groups, we will use a test that allows us to study differences across
more than two populations: the non-parametric Friedman test.

The results will be statistically significant at 𝛼=0.05. We will
normalize the data distribution by the project LOC to avoid possible
biases and quantify the effect size using the Cliff’s Delta (𝛿) [4].

RQ1: When are ML-Specific code smells introduced in ML-enabled
systems? After the commit data extraction phase described in Sec-
tion 3.5, we will collect all the smell-introducing commits to un-
derstand when each ML-CS is introduced. The outline of the smell-
introducing commits will allow us to understand which ML-CSs
are introduced during file creation and which occur during the
evolution and maintenance of ML projects. To gain insights into
the lifecycle of ML-specific code smells, we will also implement a
segmentation approach based on three key factors: development
time, activity levels, and distance from the release. The first two
segments will be used to examine the moment at which ML-CSs
are introduced. Each commit is categorized based on its duration
since the project started and its position in the commit history.
Subsequently, we will conduct an analysis within each segment to
determine the presence of smell-introducing commits. In addition
to these segments, the third segment investigates the relationship
between the introduction of ML-CSs and project releases. We iden-
tify commits labeled as "Release" using PyDriller and categorize all
other commits based on their proximity to the subsequent project
release (e.g., one day before the next release). By examining the
temporal proximity of code smell occurrences to release events, we
aim to ascertain whether the timing of releases influences develop-
ers’ proneness to introduce ML-CSs. Table 3 provides the segments
and the value that will be used for the segmentation.

RQ2: What tasks were performed when the ML-Specific code smells
were introduced? After collecting the list of smell-introducing com-
mits for all ML-CS instances, we will analyze their messages to
explain the rationale behind the changes. Specifically, we will lever-
age pattern matching, as previously done by Tufano et al. [23] to

Table 3: Segmentation of commits for the analysis of the introduc-
tion of ML-CSs.

Tag Description Values
Development Time Based on the duration

since the project’s start-
ing date

[one week, one
month, one year,
more than one year]

Activity Level Based on its sequence in
the project’s commit his-
tory, identifying the num-
ber of previous commits.

[first 10% of commits,
first 20% of commits,
first 50% of commits,
after the first 50% of
commits]

Distance from a Release: Based on the time elapsed
before the next release.

[one day, one week,
one month, more
than one month]

analyze why traditional code smells are introduced. In detail, we
will extract the rationale, starting from the label set indicating the
change operations described in Table 4. Finally, we will analyze to
what extent commit rationales and introducedML-CSs co-occur.We
will analyze whether the smell-introducing commits acknowledge
the presence of the ML-CS, resulting in self-admitted ML-CSs.

Table 4: Change operation tags for the rationale analysis.

Tag Description
Bug Fixing The commit aimed at fixing a bug.
Enhancement The commit aimed at implementing an enhancement in the

system.
New Feature The commit aimed at implementing a new feature in the

system.
Refactoring The commit aimed at performing refactoring operations.

RQ3: When and how ML-specific code smells are removed in ML-
enabled systems? After analyzing the conditions and reasons for in-
troducingML-CSs, wewill perform a similar analysis from the smell-
removing commits. As forRQ1, we will first verify whether ML-CSs
are mitigated in a smell-removing commit and identify which are
unmitigated, employing the same segmentation adopted and repre-
sented in Table 3. Afterward, we will focus on the smell-removing
commits. We will collect the messages of all smell-removing com-
mits using the pattern matching approach adopted in RQ2, relying
on the tags in Table 4 to extract the rationale behind the removal.
This analysis will allow us to extract the refactoring operations
addressing ML-CSs. From the set of the smell-removing commits
analyzed, we will consider apart the commits that do not perform
changes to ML-CSs but remove them by deleting the files.

RQ4: How long do ML-Specific code smells survive in the code? To
understand the lifetime of each ML-CS instance, we will compute
the number of commits from the smell-introducing commit to the
smell-removing commit and the time span in days. Given such
values, we will compute the mean lifespan of each ML-CS type to
understand which smells survive for a longer lifespan.

3.7 Public Data Availability
To ensure the replicability of this work and enable researchers to
build upon our study, we will release all materials, including scripts
and datasets, in an online appendix hosted in permanent storage.
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4 THREATS TO VALIDITY
This section discusses possible threats to validity that could impact
our results and the strategies we will adopt to mitigate them.

Threats to Construct Validity. A possible threat concerns the de-
tection of the ML-CS instances. Indeed, a rule-based detection tool
could lead to false positives and negatives. To limit this threat,
we will implement a pattern-matching strategy using an AST and
reflecting the definitions provided by Zhang et al. [29]. We will
manually validate the tool’s accuracy by selecting a statistically
significant sampling of ML-CSs. While this solution limits the de-
tection of the set of smells defined in the literature, this is a starting
point for creating a quality assessment tool for ML-enabled systems.

Another threat regards data collection, particularly the mismatch
between the data collected and the properties of the projects. To mit-
igate this threat, we will use an established tool to mine repositories
i.e., PyDriller, as already done in previous work [9, 17, 18].

Threats to Internal Validity. In the context of survivability anal-
ysis (RQ4), we will exclude the smells developers could not fix
because of lack of time. In other words, we will remove from our
analysis smell-introducing commits too close to the last commit of
the project by excluding those instances whose smell-introducing
date summed to the median removal time is beyond the end of the
commit history. Another threat regards smell-removing commits.
We will consider a smell removed at commit 𝑐𝑖 when the instance
is detected at commit 𝑐𝑖−1 but no longer detectable at commit 𝑐𝑖 .
This approach could lead to some imprecision due to refactoring,
not removing the ML-CS in the commit 𝑐𝑖 but modifying the source
code until it no longer matches the established detection rules.

Threats to External Validity. The main threat to the generalizabil-
ity of the results regards the dataset we will use. We are conscious
that the project selection is a critical experiment component. There-
fore, we will rely on the NICHE dataset [27], i.e., a large dataset
that contains only real ML-enabled systems. We will analyze 337
projects and over 400k commits, proposing a large empirical study.
The projects are provided from different contexts and have differ-
ent characteristics (e.g., size, number of files). We know the results
could not directly apply to industrial projects; however, we invite
researchers to replicate our study on closed-source projects to iden-
tify differences and common points.

Another generalizability threat is related to the programming
language used to write the systems under analysis i.e., Python.
We are aware that due to the specific characteristics of this pro-
gramming language, the generalizability of our results needs to be
confirmed by future studies using other programming languages.
We intend to conduct similar investigations for other programming
languages as part of our future agenda to confirm the findings.

Threats to Conclusion Validity. The main threat to validity is
related to the statistical test that we want to apply to address the
𝑅𝑄0 i.e., the Friedman or the Wilcoxon test and Cliff’s Delta, since
the characteristics of the distribution of the data can violate the
assumptions that need to be presented to conduct the tests. Before
applying these tests, we will verify the distribution of the projects
to verify the normality of the data, and only after this will we select
the most appropriate test.

As the last conclusion validity threat, to calculate the lifespan
in 𝑅𝑄4, we want to use the number of commits and days as a time
indicator. These two indicators could not be precise enough. Due
to their internal policies, some communities may not commit even
over long periods, thus making comparative analyses inaccurate.

5 CONCLUSION
This paper describes a plan to investigate AI-specific code smells.
Through the analysis of 337 projects, we want to understand (i) the
prevalence of AI-CSs, (ii) when and why they are introduced and
removed, and (iii) their survival time. The implications of this study
could be significant for the AI engineering community. On the one
hand, we will provide CodeSmile a tool to detect AI-CS instances.
On the other hand, the valuable insights from the large-scale empir-
ical study we will perform will allow for eliciting ways to prevent
developers from introducing such smells and help remove them
when already present. Using the findings of this study, we aim to
enhance the state of knowledge in the domain of AI quality assur-
ance, directing future research endeavors towards the identification
and resolution of quality issues specific for AI-enabled systems,
moving towards the improving of the overall AI quality.
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